首页 | 官方网站   微博 | 高级检索  
     

急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响
引用本文:徐雪梅,翟惟东,吴金浩.急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响[J].海洋学报,2013,35(5):112-120.
作者姓名:徐雪梅  翟惟东  吴金浩
作者单位:1.国家海洋环境监测中心 国家海洋局近岸海域生态环境重点实验室, 辽宁 大连 116023
基金项目:国家重点基础研究发展计划(2009CB421204);国家自然科学基金项目(41206060;41276061);国家海洋局北黄海海-气二氧化碳交换通量试点性监测项目。
摘    要:基于渤海表层典型的碳酸盐系统,通过实验室密闭培养实验,分析急性CO2酸化条件对菲律宾蛤仔(Ruditapes philippinarum) CaCO3形成速率(G)和CO2呼吸速率(RC)的影响,以探讨局部海域CO2酸化的底层海水在潮流或者风海流等因素的驱动下,脉冲式影响贝类栖息地时养殖贝类可能的响应。结果表明,菲律宾蛤仔在急性CO2酸化条件下发生轻微的钙壳溶解和显著的呼吸抑制。CO2酸化和菲律宾蛤仔的呼吸作用共同驱动钙壳溶解,溶解速率随Ω文石下降而升高,G(μmol/(FWg·h))=0.14 × Ω文石-0.49 (n=12, r=0.95, p<0.01)。活体菲律宾蛤仔钙壳保持稳定的Ω文石临界值为3.5,而在Ω文石=1.0的条件下,每天溶解的钙壳相当于贝壳总重的2‰。相较于钙壳溶解,Ω文石改变对菲律宾蛤仔呼吸作用的影响更大,RC(μmol/(FWg·h))=0.27 × Ω文石+0.90 (n =12, r=0.82, p<0.01)。由于呼吸代谢决定了摄食等各种耗能行为的效率,因此本研究的结果表明,尽管菲律宾蛤仔可以通过摄食等自身调节机制来抵御造成钙壳溶解的环境胁迫,然而这一机制本身就可能受到酸化环境的不良影响。

关 键 词:急性CO2酸化    菲律宾蛤仔    碳酸钙饱和度    钙壳溶解    呼吸作用
收稿时间:2012/12/19 0:00:00

Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum
XU Xuemei,ZHAI Weidong and WU Jinhao.Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum[J].Acta Oceanologica Sinica (in Chinese),2013,35(5):112-120.
Authors:XU Xuemei  ZHAI Weidong and WU Jinhao
Affiliation:1.Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China2.LiaoNing Ocean and Fishery Science Research Institute, Dalian 116023, China
Abstract:A popularly cultured marine shellfish (Ruditapes philippinarum) was exposed to a series of CO2-acidified seawaters for 4 hours. The waters had a constant salinity of 30.7 and an alkalinity of 2 350 μmol/kg. Both were the typical values of the surface water of Bohai Sea. Using the alkalinity anomaly method, effects of CO2-driven ocean acidification on the calcification and respiration of R. philippinarum were investigated. The results showed that, slight shell dissolution and significant respiration decline of R. philippinarum occurred under several short-term CO2-acidified scenarios. A function of CaCO3 production rate (G) versus CaCO3 saturation of aragonite (Ωarag) had been developed as G(μmol/FWg·h)=0.14 × Ωarag-0.49 (n=12, r=0.95, p<0.01). This function suggested that the shell is instable on the conditions of Ωarag <3.5. However in a scenario where Ωarag decreases to 1.0-1.5 in CO2-acidified subsurface waters in the Bohai Sea (in late summer) and the North Yellow Sea (in autumn), the daily dissolved shell is only equivalent to insignificantly <2‰ of the net shell weight. In contrast, respiration declines and metabolic activity changes of R. philippinarum under CO2-driven acidification were more notable. The function of inorganic carbon production rate (RC) of R. philippinarum versus Ωarag was RC(μmol/FWg·h)=0.27 × Ωarag+0.90 (n=12, r=0.82, p<0.01), suggesting that declines of Ωarag had negative impacts on respiration much more than shell dissolution.
Keywords:CO2-driven acidification  Ruditapes philippinarum  CaCO3 saturation  shell dissolution  respiration
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号