首页 | 官方网站   微博 | 高级检索  
     

卷破波作用下沙质岸滩剖面形态判别式初探
引用本文:蒋昌波,伍志元,陈杰,邓斌,隆院男,李廉洁.卷破波作用下沙质岸滩剖面形态判别式初探[J].海洋学报(英文版),2017,36(9):91-100.
作者姓名:蒋昌波  伍志元  陈杰  邓斌  隆院男  李廉洁
作者单位:长沙理工大学水利工程学院, 长沙, 410004;水沙科学与水灾害防治湖南省重点实验室, 长沙, 410004;长沙理工大学水科学与环境工程国际研究中心, 长沙, 410004,长沙理工大学水利工程学院, 长沙, 410004;水沙科学与水灾害防治湖南省重点实验室, 长沙, 410004,长沙理工大学水利工程学院, 长沙, 410004;水沙科学与水灾害防治湖南省重点实验室, 长沙, 410004;长沙理工大学水科学与环境工程国际研究中心, 长沙, 410004,长沙理工大学水利工程学院, 长沙, 410004;水沙科学与水灾害防治湖南省重点实验室, 长沙, 410004;长沙理工大学水科学与环境工程国际研究中心, 长沙, 410004,长沙理工大学水利工程学院, 长沙, 410004;水沙科学与水灾害防治湖南省重点实验室, 长沙, 410004;长沙理工大学水科学与环境工程国际研究中心, 长沙, 410004,长沙理工大学水利工程学院, 长沙, 410004
基金项目:The National Natural Science Foundation of China under contract Nos 51239001, 51179015, 51409022 and 51509023; the Hunan Provincial Innovation Foundation for Postgraduate under contract No. CX2015B348.
摘    要:通过波浪水槽实验,开展不同类型波浪作用下的沙质岸滩演化规律研究工作。本次实验研究不考虑比尺,采用1:10与1:20组成的复合沙质斜坡对岸滩进行概化,选取规则波和椭圆余弦波两种典型波浪作用,对波浪的传播、变形和破碎、上爬、回落过程以及波浪作用前后沙质岸滩床面地形进行了观测,探讨波浪作用下沙质岸滩剖面演化规律。本文实验工况中,规则波作用下,岸滩剖面呈现出沙坝剖面和滩肩剖面,椭圆余弦波作用下的岸滩剖面均呈滩肩形态,发现岸滩剖面形态不仅与波浪作用类型、强度、周期等因素相关,还与波浪破碎的强度等因素有关。通过对实验过程中现象的进行观察和分析,引入了卷破波水舌冲击角的概念。对波浪卷破破碎后形成的水流挟沙运动与岸滩剖面形态的关系进行定性分析,对水舌冲击角与Irribarren参数之间的关系进行定量分析,基于Irribarren参数与岸滩剖面形态的关系初步建立了波浪作用下沙质岸滩剖面形态判别关系式。通过本文实验结果和前人实验结果对趋势线进行拟合,求得其判别系数,判别式能够较好地划分淤积型岸滩、侵蚀型岸滩及过渡型岸滩三种岸滩形态。

关 键 词:岸滩形态  卷破波  实验研究  规则波  椭圆余弦波
收稿时间:2016/6/14 0:00:00

An available formula of the sandy beach state induced by plunging waves
JIANG Changbo,WU Zhiyuan,CHEN Jie,DENG Bin,LONG Yuannan and LI Lianjie.An available formula of the sandy beach state induced by plunging waves[J].Acta Oceanologica Sinica,2017,36(9):91-100.
Authors:JIANG Changbo  WU Zhiyuan  CHEN Jie  DENG Bin  LONG Yuannan and LI Lianjie
Affiliation:School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;Key Laboratory of Hunan Province for Water-sediment Sciences and Water Disaster Prevention, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;International Research Center of Water Science and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China,School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;Key Laboratory of Hunan Province for Water-sediment Sciences and Water Disaster Prevention, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China,School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;Key Laboratory of Hunan Province for Water-sediment Sciences and Water Disaster Prevention, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;International Research Center of Water Science and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China,School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;Key Laboratory of Hunan Province for Water-sediment Sciences and Water Disaster Prevention, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;International Research Center of Water Science and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China,School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;Key Laboratory of Hunan Province for Water-sediment Sciences and Water Disaster Prevention, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China;International Research Center of Water Science and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China and School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410004, China
Abstract:Laboratory experiments are performed to explore the response rule of a sandy beach profile under plunging wave on a non-uniform sediment-bed slope. The initial beach slope of combination of 1/10 and 1/20 is exposed to regular waves and cnoidal waves respectively. The free surface elevation, process of wave propagation, wave breaking, uprush and backwash and the change of a cross-shore beach profile are measured and recorded. The beach profile under the regular waves action exhibits two parts: a sandbar profile and a beach berm profile, and only one typical profile transformation under the cnoidal waves action is obtained, which is the beach berm profile. In the laboratory experiments, it is found that the beach states under wave action related to the previous factors. In addition, they are related to the characteristic of breaking waves such as the breaking intensity of the plunging wave. A concept about the characteristic angle of the plunging wave has been put forward through the observation and analysis of the phenomenon of the laboratory experiment. A qualitative analysis about the sediment transport carrying by currents generated from the plunging wave and the state of beach profile under the wave action has been done. The quantitative analysis about the relationship between the characteristic angle and Irribarren number has been done. An available formula of equilibrium states for the sandy beach induced by the plunging wave has been established based on the relationship between Irribarren number and the beach profile. By fitting these experimental results and others'' experimental results to three lines, the three fitting coefficients can be calculated in their formula respectively. The recommended empirical formulas can divide three states of a beach morphology profile obviously, which include a depositive beach, an erosive beach and an intermediate beach.
Keywords:formula of beach state  plunging wave  experimental study  regular wave  cnoidal wave
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号