首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  国内免费   2篇
  完全免费   6篇
数理化   17篇
  2016年   2篇
  2015年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
2.
设G是由中心扩张1→Zpm→G→Zp×…Zp所决定的有限p-群,且|G’|≤p.确定了G的自同构群结构,推广了Winter和Dietz的工作  相似文献   
3.
In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G1×D8×Z2,where G1=(a,b,c|a4=b2=c2=1,ab=a-1,[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.  相似文献   
4.
设$G$是一个群, $X$是$G$的一个子集, 若对于任意$x,y\in X$且$x\neq y$, 都有$xy\neq yx$, 则称$X$是$G$的一个非交换集. 进一步, 如果对于$G$中的任意其它非交换子集$Y$, 都有$|X|\geq|Y|$, 那么称$X$是$G$的一个极大非交换集. 文中确定了Frattini子群循环的有限$p$-\!\!群中极大非交换集和极大Abel子群的势.  相似文献   
5.
王玉雷  刘合国  吴佐慧 《数学杂志》2016,36(6):1273-1282
本文研究了一类中心循环的有限p-群G的自同构群.利用在G的导群上作用平凡的自同构以及环上的辛群和正交群,确定了G的自同构群的结构,这推广了Bornand的相应结果.  相似文献   
6.
重新确定了广义超特殊p-群G的自同构群的结构.设|G|=p~(2n+m),|ζG|=p~m,其中n≥1,m≥2,Aut_cG是AutG中平凡地作用在ζG上的元素形成的正规子群,则(i)若p是奇素数,则AutG=〈θ〉×Aut_cG,其中θ的阶是(p-1)p~(m-1);若p=2,则AutG=〈θ_1,θ_2〉×Aut_cG,其中〈θ_1,θ_2〉=〈θ_1〉×〈θ_2〉≌Z_(2m-2)×Z_2.(ii)如果G的幂指数是p~m,那么Aut_cG/InnG≌Sp(2n,p).(iii)如果G的幂指数是p~(m+1),那么Aut_cG/InnG≌K×Sp(2n-2,p),其中K是p~(2n-1)阶超特殊p-群(若p是奇素数)或者初等Abel 2-群.特别地,当n=1时,Aut_cG/InnG≌Z_p.  相似文献   
7.
确定了广义超特殊P-群G的自同构群的结构.设|G|=p2n+m,|ζG|=pm,其中n≥1,m≥2,AutfG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是pm时,(i)如果p是奇素数,那么Aut G/AutfG≌Z(p_1)pm-2,并且AutfG/Inn G≌Sp(2n,p)×zp.(ii)如果p=2,那么AutG=AutfG(若m=2)或者AutG/AutfG≌Z2m-3×z2(若m≥3),并且AutfG/InnG≌Sp(2n,2)× z2.(2)当G的幂指数是pm+1时,(i)如果p是奇素数,那么AutG=<θ>×AutfG,其中p的阶是(p-1)pm-1,且AutfG/InnG≌K(×)Sp(2n-2,p),其中K是p2n-1阶超特殊p-群.(ii)如果p=2,那么Aut G=<θ1,θ2>(×) AutfG,其中<θ1,θ2>=<θ1>×<θ2>≌Z2m-2×Z2,并且AutfG/InnG≌K(×)Sp(2n-2,2),其中K是22n-1阶初等Abel 2-群.特别地,当n=1时,AutfG/InnG≌Zp.  相似文献   
8.
确定了广义超特殊p-群G的自同构群的结构.设|G|=p~(2n+m),|■G|=p~m,其中n≥1,m≥2,Aut_fG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是p~m时,(i)如果p是奇素数,那么AutG/AutfG≌Z_((p-1)p~(m-2)),并且AutfG/InnG≌Sp(2n,p)×Zp.(ii)如果p=2,那么AutG=Aut_fG(若m=2)或者AutG/AutfG≌Z_(2~(m-3))×Z_2(若m≥3),并且AutfG/InnG≌Sp(2n,2)×Z_2.(2)当G的幂指数是p~(m+1)时,(i)如果p是奇素数,那么AutG=〈θ〉■Aut_fG,其中θ的阶是(p-1)p~(m-1),且Aut_f G/Inn G≌K■Sp(2n-2,p),其中K是p~(2n-1)阶超特殊p-群.(ii)如果p=2,那么AutG=〈θ_1,θ_2〉■Aut_fG,其中〈θ_1,θ_2〉=〈θ_1〉×〈θ_2〉≌Z_(2~(m-2))×Z_2,并且Aut_fG/Inn G≌K×Sp(2n-2,2),其中K是2~(2n-1)阶初等Abel 2-群.特别地,当n=1时...  相似文献   
9.
10.
如果G的所有子群都是次正规的,而且G满足下面条件之一,那么G是幂零群.(1)G有一个次正规列1△H△K△G,其中K/H是幂零群,H和G/K是有限生成的;(2)G有一个正规子群N使得,N在其子集的中心化子上满足极小条件,并且G/N是有限生成的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号