首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  国内免费   8篇
  完全免费   42篇
自然科学   282篇
  2017年   5篇
  2016年   4篇
  2015年   15篇
  2014年   16篇
  2013年   20篇
  2012年   16篇
  2011年   28篇
  2010年   28篇
  2009年   36篇
  2008年   23篇
  2007年   29篇
  2006年   19篇
  2005年   14篇
  2004年   9篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有282条查询结果,搜索用时 46 毫秒
1.
一种组合型中文文本分类特征选择方法   总被引:2,自引:1,他引:1  
根据基于频数分布和基于互信息的特征选择模式的特点,将传统的tf-idf因子以及基于互信息的特征选择方法分别进行了改进,并在此基础上提出了一种新的组合型特征选择方法。试验结果表明,该算法提高了文本分类的准确率。  相似文献   
2.
Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the difference in information system. Because the similar characteristics are not revealed in discernibility matrix, the result may not be the simplest rules. Although differencesimilitude(DS) methods take both of the difference and the similitude into account, the existing search strategy will cause some important features to be ignored. An improved DS based algorithm is proposed to solve this problem in this paper. An attribute rank function, which considers both of the difference and similitude in feature selection, is defined in the improved algorithm. Experiments show that it is an effective algorithm, especially for large-scale databases. The time complexity of the algorithm is O(| C |^2|U |^2).  相似文献   
3.
A New Approach of Feature Selection for Text Categorization   总被引:1,自引:0,他引:1  
This paper proposes a new approach of feature selection based on the independent measure between features for text categorization. A fundamental hypothesis that occurrence of the terms in documents is independent of each other, widely used in the probabilistic models for text categorization (TC), is discussed. However, the basic hypothesis is incom plete for independence of feature set. From the view of feature selection, a new independent measure between features is designed, by which a feature selection algorithm is given to ob rain a feature subset. The selected subset is high in relevance with category and strong in independence between features, satisfies the basic hypothesis at maximum degree. Compared with other traditional feature selection method in TC (which is only taken into the relevance account), the performance of feature subset selected by our method is prior to others with experiments on the benchmark dataset of 20 Newsgroups.  相似文献   
4.
Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.  相似文献   
5.
文本分类中特征选择方法的比较和改进   总被引:2,自引:1,他引:1  
考察了文档频率DF、互信息MI、CHI统计、CC统计四种不同的特征选择方法,并结合K近邻算法进行分类精度上的比较.为消除MI对低频词的倚重,提出一种DF与MI结合的特征评价函数,并验证了这种组合特征选择方法的有效性.  相似文献   
6.
集成学习和特征选择是当前机器学习领域中的研究热点.集成学习通过重复采样可产生个体学习器之间差异度,从而提高个体学习器的泛化能力,特征选择应用到集成学习可进一步提高集成学习技术的效果,该研究有3个方面:数据子集的特征选择、个体学习器的选择和多任务学习.该文对近几年集成学习中特征选择技术的研究进行回顾,尤其对以上3个方面的研究分别进行总结,提出一些共性的技术指导以后的研究.  相似文献   
7.
通过对朴素贝叶斯分类器的讨论, 提出将贝叶斯方法应用于医学图像分割后的图像分类思想. 给出一种基于朴素贝叶斯分类器的图像分类方法, 对从尿沉渣图像中识别出的微粒进行正确分割及特征提取与选择, 并利用朴素贝叶斯分类器进行分类. 实验结果表明, 所提出的方法用于解决图像分类有效.  相似文献   
8.
基于规则学习的文本分类算法RIPPER具有易理解、易优化、高效率等特点,但是当规则所涉及的特征项很多的时候,上述优点不复存在。基于层次的规则学习算法hRIPPER采用了层次架构对RIPPER进行了改进,但其对特征项的过滤仍然有限。针对RIPPER,hRIPPER在规则学习过程中出现的问题,对规则学习的分类算法进行改进,提出了一种改进的基于规则学习的文本分类算法iRIPPER,在规则学习的同时进一步过滤噪音特征项。实验证明,该方法不但有效地提取了特征项,生成较少的规则,提高了算法的准确率和召回率,而且缩短了生成规则的时间,从而改进了规则学习分类算法的性能。  相似文献   
9.
文本分类中的类别信息特征选择方法   总被引:1,自引:0,他引:1       下载免费PDF全文
随着网上电子文档的急剧增长,文本分类技术在信息检索中的应用变得日益重要.特征维数增加会使样本统计特性的评估变得更加困难,从而降低分类器的泛化能力,出现“过学习”的现象.因此,文档特征的选择和提取是文本分类的必要前提.提出一种基于类别信息的特征选择方法,该方法在尽量保留文档信息的同时,考虑了文档的类别信息.实验表明,这种方法的分类性能比较好,特别是在微平均指标上,与OCFS以及卡方统计量相比有较大幅度的提高.  相似文献   
10.
With the traditional Chinese medicine herbs angelicae dahuricae radix (ADR or Baizhi) and salviae miltiorrhizae radix (SMR or Danshen) as two examples, this work studies the automatic discrimination of the geographic origins of the herbs using near infrared (NIR) reflectance spectroscopy. Multi-class support vector machine (SVM) is utilized for the purpose, and recursive SVM is utilized to select the feature spectral segments that are decisive for the discrimination. With only 5 and 8 short spectral segments, discriminative accuracies of 92% are achieved on independent test sample sets. This work not only provides a prototype of accurate rapid discriminating systems for quality control of herbal medicines, but also opens new possibilities in studying subtle differences in the chemical compositions of herbs from different cultivation conditions and investigating their associations with the effectiveness of the herbs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号