首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   4篇
地球科学   5篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
基于1960—2012年的地面常规气象指标、大尺度气候指数和NOAA气候分析产品,利用功率谱周期分析、时间尺度分离分析和交叉检验的逐步回归分析等,把吉林省春旱期(4—5月)降水量分离成不同时间尺度的值,并在年代际尺度和年际尺度下分别找到显著相关的影响因子。结果表明:吉林春旱期降水存在着2~4 a的年际变化和10 a左右的年代际变化。在年代际尺度上,4月降水与前期3月南半球环球状态指数以及俄罗斯东部高纬地区的低空经向风有关,5月降水与同期北半球环球状态指数和前期4月太平洋中高纬环流有关;在年际尺度上,4月降水与前期3月混合ENSO指数和同期当地相对湿度、华东华北沿海地区的低层经向风有关,5月降水与同期北大西洋涛动指数以及局地相对湿度、地面气压有关。利用选出的影响因子对降水进行预报,估计值和真实值的相关系数分别为0.67(4月)和0.81(5月),且选择合适的影响因子比模型结构更加重要。  相似文献   
2.
郭彦  李建平 《大气科学》2012,36(2):385-396
针对预报量变化中存在受不同物理因子控制的不同时间尺度变率特征,本文提出了分离时间尺度的统计降尺度模型。应用滤波方法,将不同尺度的变率分量分开,在各自对应的时间尺度上利用不同的大尺度气候因子分别建立降尺度模型。华北汛期(7~8月)降水具有年际变率和年代际变率,本文以华北汛期降水为例利用分离时间尺度的统计降尺度模型进行预测研究。采用的预报因子来自海平面气压场、500hPa位势高度场、850hPa经向风场和海表温度场以及一些已知的大尺度气候指数。利用基于交叉检验的逐步回归法建立模型。结果表明,年际尺度上,华北汛期降水与前期6月赤道中东太平洋海温以及同期中国东部的低层经向风密切相关;年代际尺度上,在东印度洋—西太平洋暖池海温的作用下,华北降水与前期6月西南印度洋海平面气压有同步变化关系。年际模型和年代际模型的结果相加得到对总降水量的降尺度结果。1991~2008年的独立检验中,模型估计的降水和观测降水的相关系数是0.82,平均均方根误差是14.8%。结合模式的回报资料,利用降尺度模型对1991~2001年的华北汛期降水进行回报试验。相比于模式直接预测的降水,降尺度模型预测的结果有明显改进。改进了模式预测中年际变率过小的问题,与观测降水的相关系数由0.12提高到0.45。  相似文献   
3.
阮成卿  李建平 《大气科学》2016,40(1):215-226
本文采用偏相关预报因子挑选法和条件降尺度法,对已有的华北汛期(7~8月)降水时间尺度分离(TSD)降尺度模型进行了改进.利用偏相关法,找到一个新的影响华北汛期降水年际分量的前期预报因子,即6月北大西洋—欧亚遥相关(AEAT).该因子将扰动信号储存于北大西洋三极子结构,并在7~8月释放出来影响下游贝加尔湖低压系统的发展,从而影响华北汛期降水.利用6月Niño3指数和AEAT指数,本文建立了条件TSD统计降尺度模型,即按照预报因子的强度进行逐年分类,对于每个分类设计相应的预报模型,从而避免信息较弱因子的干扰.条件TSD降尺度方法显著改善了华北汛期降水的预测技巧,在独立检验阶段,预报降水与观测降水的相关系数由原模型的0.61提高到0.77,符号一致率从70%提高到87%.  相似文献   
4.
基于时间尺度分离的中国东部夏季降水预测   总被引:2,自引:1,他引:1       下载免费PDF全文
基于时间尺度分离,利用NCEP 第2代气候预测系统(CFSv2)每年 4月起报的夏季月平均预测资料, 结合实际观测资料和再分析资料,对江淮流域及华北地区夏季降水距平百分率进行降尺度预测。将预测量和预测因子分为年际分量和年代际分量,在两个时间尺度上分别建立降尺度模型,两个预测分量之和为总预测量。对1982—2008年拟合时段的夏季降水距平百分率的回报结果表明:降尺度预测结果相对于原始模式结果预测技巧显著提高。降尺度预测与实况降水在江淮流域和华北地区的空间相关系数最大值超过0.8,多年平均值也分别提高到0.53和0.51;时间相关在每个站点也显著增强,相关系数为0.38~0.65。对2009—2013年进行独立样本检验,结果表明:降尺度模型能较好地预测出该时段的降水异常空间型态。同时,该模型对2014年夏季降水长江以南偏多、黄淮地区偏少的分布形势也有一定预测能力。  相似文献   
5.
基于高温日数存在受不同物理因子影响不同时间尺度变率的特征,应用滤波对华南夏季高温日数进行时间尺度分离,得到高温日数的年代际分量和年际分量。统计分析高温日数总量、年代际分量和年际分量在各自对应时间尺度上的影响因子,采用"向前"交叉检验逐步回归法,分别建立高温日数总量、年代际分量和年际分量的回归模型。高温日数总量的回归模型即为高温日数不区分时间尺度的直接回归模型,而两个分量回归模型拟合结果的叠加,即为高温日数时间尺度分离统计模型对总量的拟合。利用十折交叉检验法,对高温日数直接回归模型和时间尺度分离统计模型的拟合结果进行比较:相比高温日数直接回归模型,时间尺度分离统计模型的年代际分量均方根误差由2.6降低到2.3,与观测数据的相关系数由0.69提高到0.73(显著性水平α=0.01);年际分量均方根误差由3.2降低到2.9,与观测数据的相关系数由0.4(α=0.1)提高到0.48(α=0.01);高温日数总量均方根误差由4.1降低到3.7,与观测数据的相关系数由0.48提高到0.62(α=0.01)。1979~2010年拟合时段华南夏季高温日数的回报结果表明:两模型回报结果与观测数据均存在明显相关(α=0.01),直接回归模型的相关系数为0.57,时间尺度分离统计模型提高到0.72。2011~2013年独立检验时段的预测结果表明:直接回归模型预测结果的平均均方根误差为26.4%,时间尺度分离统计模型降低到12.3%。初步结果表明,两模型对华南夏季高温日数均有一定的预测能力,而时间尺度分离统计模型的预测结果有所改进。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号