首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  国内免费   2篇
  完全免费   13篇
地球科学   24篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1997年   3篇
  1985年   1篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
1. Introduction In spite of the progress achieved in global climatemodelling during the last few decades, the models stillshow considerable errors even for the surface air tem-perature ?eld (Covey et al., 2000; IPCC, 2001; Lam-bert and Boer, 2001). As i…  相似文献   
2.
Ozone measurements, performed since 1987, at the Swedish TOR/EUROTRACstation Åreskutan (lat. 63.4° N, long. 13.1° E, 1250 m abovesea level) are analyzed. The annual average ozone concentration at the sitehas increased by about 0.4 ppbv (1%) per year during the period1987–1994. The corresponding trends for individual months show adecrease during April–September and an increase during the rest of theyear. The ozone budget at Åreskutan has been investigated using backtrajectories of the air parcels, and the cosmogenic radionuclide7Be as a tracer of stratospheric air. From a simple diagnosticmodel, it is estimated that the contribution of stratospheric ozone to theconcentrations measured at Åreskutan is 5 ppbv (or 14% of themeasured values) on average, reaching a maximum of 23 ppbv (50%),during the episodes of direct stratospheric influence. In spring, thestratospheric contribution to ozone budget at Åreskutan is at itsmaximum, and approximately equal to the net photochemical ozone productionin the air mass affecting the site, whereas in winter, it is compensated byozone chemical sink during the transport of air masses from pollutedEuropean regions, to Scandinavia.  相似文献   
3.
To find out the secular and seasonal trends of the 13C value and CO2 concentration in the surface air and the determination of the 13C in the atmospheric CO2 collected at Tsukuba Science City was carried out during the period from July 1981 to October 1983. The monthly average of the 13C value of CO2 in the surface air collected at 1400 LMT ranged from -7.52 to \s-8.45 with an average of -7.96±0.25 and the CO2 concentration in the air varied from 334.5 l 1-1 to 359 l 1-1 with an average of 347.2±6.3 l 1-1. The 13C value is high in summer and low in winter and is negatively correlated with the CO2 concentration. In general, the relationship between the 13C and the CO2 concentration is explainable by a simple mixing model of two different constant carbon isotopic species but the relationship does not always follow the model. The correlation between the 13C value and the CO2 concentration is low during the plant growth season and high at other times. The observed negative deviation of the 13C value from the simple mixing model in the plant growth season is partly due to the isotopic fractionation process which takes place in the land biota.  相似文献   
4.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   
5.
A model intercomparison in terms of surface air temperature annual cycle ampitude-phase characteristics(SAT AC APC)is performed. The models included in the intercomparison belong to two groups:five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic consituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT,also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics laterthan-observed spring and autumn moments. The models with larger(smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger(smaller)interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°-70°N and 60°-70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice.No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing.There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT.It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models.  相似文献   
6.
The amplitude-phase characteristics(APC)of surface air temperature(SAT)annual cycle(AC)in the Northern Hemisphere are analyzed.From meteorological observations for the 20th century and meteorological reanalyses for its second half,it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates.Nevertheless,some exceptions exist.The positive correlationbetween these two variables is found over the two desert regions:in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans.Southward of the characteristic annual mean snow-ice boundary (SIB) position,the shape ofthe SAT AC becomes more sinusoidal under climate warming.In contrast,northward of it,this shapebecomes less sinusoidal.The latter iS also found for the above-mentioned two desert regions.In theFar East(southward of about 50°N),the SAT AC shifts as a whole:here its spring and autumn phasesoccur earlier if the annual  相似文献   
7.
In the context of 1980-1992 JMA(Japan Meteorological Agency) GMS TBB gridded dataset,study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized space/time characteristics of low-frequency oscillation(LFO) in the tropical atmosphere investigated alongside possible causes.It turns out that the LFO takes on surprisingly noticeable annual cycle features marked by a wider variable range of the LFO periods over northern tropics than the southern counterpart and equatorial vicinity.In addition,on the whole,the signals are more intense in the Northern Hemisphere during summer/autumn and at equatorial/southern latitudes when northern winter/spring occur as well.Also,not all these features are identical for different segments at the same latitudes,displaying signatures on a local basis,and the spatial/temporal locality can be qualitatively interpreted in terms of nonlinear interaction between tropical waves,and modulation of diabatic heating on the LFO periods.  相似文献   
8.
The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-g1.0, FGOALS-g2 and FGOALSs2), which have participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), are presented in this paper. The seasonal cycle of SST in the tropical Pacific is realistically reproduced by FGOALS-g2 and FGOALSs2, while it is poorly simulated in FGOALS-g1.0. Three feedback mechanisms responsible for the SST annual cycle in the eastern Pacific are evaluated. The ocean-atmosphere dynamic feedback, which is successfully reproduced by both FGOALS-g2 and FGOALS-s2, plays a key role in determining the SST annual cycle, while the overestimated stratus cloud-SST feedback amplifies the annual cycle in FGOALS-s2. Because of the serious warm bias existing in FGOALS-g1.0, the ocean-atmosphere dynamic feedback is greatly underestimated in FGOALS-g1.0, in which the SST annual cycle is mainly driven by surface solar radiation. FGOALS-g1.0 simulates much stronger ENSO events than observed, whereas FGOALS-g2 and FGOALSs2 successfully simulate the observed ENSO amplitude and period and positive asymmetry, but with less strength. Further ENSO feedback analyses suggest that surface solar radiation feedback is principally responsible for the overestimated ENSO amplitude in FGOALS-g1.0. Both FGOALS-g1.0 and FGOALS-s2 can simulate two different types of El Ni-no events — with maximum SST anomalies in the eastern Pacific (EP) or in the central Pacific (CP) — but FGOALS-g2 is only able to simulate EP El Ni-no, because the negative cloud shortwave forcing feedback by FGOALS-g2 is much stronger than observed in the central Pacific.  相似文献   
9.
华南前汛期降水包含锋面降水和夏季风降水,提高对这2种不同性质降水的认识及如何区分是非常重要的.本文利用NCEP/NCAR再分析资料,分析了华南不同性质降水期间大气特性的差异,并采用集合经验模态分解(EEMD)方法,自适应地提取假相当位温θse的调制年循环变量(MAC),得到华南前汛期夏季风降水开始日期的划分标准.结果表明,当某年θse的MAC>δ标准差时,南海夏季风推进至华南地区,夏季风降水开始.利用该标准划分的华南前汛期夏季风降水开始日期平均为5月第6候,且具有2~3a、13~ 15 a的年际、年代际变化周期.进一步对比分析表明,此标准划分的结果基本合理.  相似文献   
10.
Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号