首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6384篇
  免费   2982篇
  国内免费   758篇
地球科学   10124篇
  2025年   89篇
  2024年   253篇
  2023年   257篇
  2022年   469篇
  2021年   549篇
  2020年   494篇
  2019年   485篇
  2018年   510篇
  2017年   484篇
  2016年   449篇
  2015年   506篇
  2014年   533篇
  2013年   615篇
  2012年   651篇
  2011年   589篇
  2010年   468篇
  2009年   419篇
  2008年   260篇
  2007年   353篇
  2006年   347篇
  2005年   231篇
  2004年   137篇
  2003年   147篇
  2002年   147篇
  2001年   104篇
  2000年   82篇
  1999年   89篇
  1998年   61篇
  1997年   44篇
  1996年   22篇
  1995年   34篇
  1994年   16篇
  1993年   27篇
  1992年   21篇
  1991年   12篇
  1990年   16篇
  1989年   13篇
  1988年   12篇
  1987年   18篇
  1986年   19篇
  1985年   14篇
  1984年   12篇
  1983年   10篇
  1982年   4篇
  1979年   6篇
  1969年   8篇
  1967年   5篇
  1966年   4篇
  1965年   4篇
  1963年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
文学思潮与民间文化都是具有特定内涵的严格概念,与其他思潮既有联系又有区别,民间文化因为自己特殊的存在状态和创造主体而形不成思潮,二十世纪中国文学发展中的五大运动都与民间文化有关,但是不能以民间文化思潮的面目出现。高有鹏先生的《论二十世纪中国文学发展中的民间文化思潮》命题不准确,文中尚有许多可以商榷之处。  相似文献   
2.
Two sets of lab-scale sequencing batch reactors (SBR), i.e., control SBR and SBR using zeolite as carrier (zeo-SBR), were applied to assess nitrogen removal efficiency. The test results revealed that zeolite powder added in SBR could improve its performance. Due to the combination of zeolite adsorption for NH4 +–N and enhanced simultaneous nitrification and de-nitrification (SND), a higher removal ratio of ammonia nitrogen in wastewater was observed in the test reactor, and the introduction of zeolite powder was helpful to inhabit sludge bulging comparing with the control SBR, in other words, activated sludge immobilized by zeolite powder could remove NH4 +–N, COD, and PO4 significantly in a shorter cycle time. Applied two hydraulic retention times (HRTs) showed that the nitrogen and phosphorus removal could be improved while adapting to load variations.  相似文献   
3.
Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western Pacific using an improved high truncated spectral model. Our results show that the wave-wave interaction and the wave-mean flow interactions are weaker in the inner dynamic process of atmospheric circulation, when atmospheric circulation is forced by the sea surface temperature of El Niño pattern. With the external thermal forcing changed from winter to summer pattern, the range of ridgeline surface of western Pacific moving northward is smaller, which causes the ridgeline surface of western Pacific on south of normal. On the contrary, the wave-wave interaction and the wave-mean flow interaction are stronger, when atmospheric circulation is forced by the sea surface temperature of La Niña pattern. With the external thermal forcing turning from winter to summer pattern, the ridgeline surface of western Pacific shifts northward about 19 latitude degrees, which conduces the ridgeline surface of western Pacific on north of normal. After moving to certain latitude, the ridgeline surface of western Pacific oscillates with the most obvious 30–60 d period and the 4°–7° amplitude. It is one of the important reasons for the interannual variation of ridgeline surface of Western Pacific that the atmospheric inner dynamical process forced out by different sea surface temperature anomaly pattern is different.  相似文献   
4.
Using the National Center for Atmospheric Research Community Climate System Model Version 3.5, this paper examines the climatic effects of afforestation in the East China monsoon region with a focus on land–atmosphere interactions and the modulating influence of ocean variability. In response to afforestation, the local surface air temperature significantly decreases in summer and increases in winter. The summer cooling is attributed to enhanced evapotranspiration from increased tree cover. During winter, afforestation induces greater roughness and weaker winds over the adjacent coastal ocean, leading to diminished latent heat flux and increased sea-surface temperature (SST). The enhanced SST supports greater atmospheric water vapor, which is accompanied by anomalous wind, and transported into the East China monsoon region. The increase in atmospheric water vapor favors more cloud cover and precipitation, especially in the eastern afforestation region. Furthermore, the increase in atmospheric water vapor and cloud cover produce a greenhouse effect, raising the wintertime surface air temperature. By comparing simulations in which ocean temperature are either fixed or variable, we demonstrate that a significant hydrologic response in East China to afforestation only occurs if ocean temperatures are allowed to vary and the oceanic source of moisture to the continent is enhanced.  相似文献   
5.
Su  Xing  Wei  Wanhong  Ye  Weilin  Meng  Xingmin  Wu  Weijiang 《Natural Hazards》2019,96(3):1367-1385
Natural Hazards - Based on classical mechanics and the law of energy conservation, we present a model for predicting landslide sliding distance. We conceptualize landslide movement as the movement...  相似文献   
6.
  总被引:1,自引:0,他引:1  
Degree days are usually defined as the accumulated daily mean temperature varying with the base temperature, and are one of the most important indicators of climate changes. In this study, the present-day and projected changes of four degree days indices from daily mean surface air temperature output simulated by Max Planck Institute, Earth Systems Model of low resolution (MPI-ESM-LR) model are evaluated with the high resolution gridded-observation dataset and two modern reanalyses in China. During 1979–2005, the heating degree days (HDD) and the numbers of HDD (NHDD) have decreased for observation, reanalyses (ERA-Interim and NCEP/NCAR) and model simulations (historical and decadal experiments), consistent with the increasing cooling degree days (CDD) and the numbers of CDD (NCDD). These changes reflect the general warming in China during the past decades. In most cases, ERA-Interim is closer to observation than NCEP/NCAR and model simulations. There are discrepancies between observation, reanalyses and model simulations in the spatial patterns and regional means. The decadal hindcast/forecast simulation performance of MPI-ESM-LR produce warmer than the observed mean temperature in China during the entire period, and the hindcasts forecast a trend lower than the observed. Under different representative concentration pathway (RCP) emissions scenarios, HDD and NHDD show significant decreases, and CDD and NCDD consistently increase during 2006–2100 under RCP8.5, RCP4.5 and RCP2.6, especially before the mid-21 century. More pronounced changes occur under RCP8.5, which is associated with a high rate of radiative forcing. The 20th century runs reflect the sensitivity to the initial conditions, and the uncertainties in terms of the inter-ensemble are small, whereas the long-term trend is well represented with no differences among ensembles.  相似文献   
7.
ABSTRACT

The Green-Ampt (GA) model has been widely used to evaluate soil water infiltration. While a simple piston profile is commonly used, the wetting profile of a soil changes during infiltration and a quarter-ellipse has been found to better describe its evolution. This study aims to improve the GA model and discuss the model parameters when the quarter-ellipse profile is utilized. The soil column is divided into three zones: saturated, transient and dry. The variable γ is introduced to express the ratio of the saturated zone depth to the wetting front depth. A modified GA model is derived via mathematical methods, but an exact solution is difficult to obtain. Therefore, a simplified (SGA) model is developed via a segmented method. Compared with the measured results, the SGA model is more accurate than the traditional model. Finally, the model parameters are discussed and a value of γ = 0.5 is recommended.  相似文献   
8.
         下载免费PDF全文
Due to the uplift of Qinghai-Tibet Plateau(QTP), the cryosphere gradually developed on the higher mountain summits after the Neocene, becoming widespread during the Late Quaternary. During this time, permafrost on the QTP experienced repeated expansion and degradation. Based on the remains and cross-correlation with other proxy records such as those from glacial landforms, ice-core and paleogeography, the evolution and changes of permafrost and environmental changes on the QTP during the past 150,000 years were deduced and are presented in this paper. At least four obvious cycles of the extensive and intensive development, expansion and decay of permafrost occurred during the periods of 150–130, 80–50, 30–14 and after 10.8 ka B.P.. During the Holocene, fluctuating climatic environments affected the permafrost on the QTP, and the peripheral mountains experienced six periods of discernible permafrost changes:(1) Stable development of permafrost in the early Holocene(10.8 to 8.5–7.0 ka B.P.);(2) Intensive permafrost degradation during the Holocene Megathermal Period(HMP, from 8.5–7.0 to 4.0–3.0 ka B.P.);(3) Permafrost expansion during the early Neoglacial period(ca. 4,000–3,000 to 1,000 a B.P.);(4) Relative degradation during the Medieval Warm Period(MWP, from 1,000 to 500 a B.P.);(5) Expansion of permafrost during the Little Ice Age(LIA, from 500 to 100 a B.P.);(6) Observed and predicted degradation of permafrost during the 20 th and 21 st century. Each period differed greatly in paleoclimate, paleoenvironment, and permafrost distribution, thickness, areal extent, and ground temperatures, as well as in the development of periglacial phenomena. Statistically, closer dating of the onset permafrost formation, more identification of permafrost remains with richer proxy information about paleoenvironment, and more dating information enable higher resolution for paleo-permafrost reconstruction. Based on the scenarios of persistent climate warming of 2.2~2.6 °C in the next 50 years, and in combination of the monitored trends of climate and permafrost changes, and model predictions suggest an accelerated regional degradation of plateau permafrost. Therefore, during the first half of the 21 st century, profound changes in the stability of alpine ecosystems and hydro(geo)logical environments in the source regions of the Yangtze and Yellow rivers may occur. The foundation stability of key engineering infrastructures and sustainable economic development in cold regions on the QTP may be affected.  相似文献   
9.
         下载免费PDF全文
Dissolved organic matter(DOM) is an important component of ice cores but is currently poorly characterized. DOM from one Holocene sample(HS, aged at 1600–4500 B.P.) and one Last Glacial Maximum sample(LS, aged at 21000–25000 B.P.) from the North Greenland Eemian Ice Drilling(NEEM) ice core were analyzed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS). CHO compounds contributed 50% of the compounds identified in negative-ionization mode in these two samples, with significant contributions from organic N, S, and P compounds, likely suggesting that marine DOM was an important source in these samples. Overall, the chemical compositions are similar between these two samples, suggesting their consistent DOM sources. However, subtle differences in the DOM between these two samples are apparent and could indicate differences in source strength or chemistry occurring through both pre-and post-depositional processes. For example, higher relative amounts of condensed carbon compounds in the HS DOM(5%), compared to the LS DOM(2%), suggest potentially important contributions from terrestrial sources. Greater incorporation of P in the observed DOM in the LS DOM(22%), compared to the HS DOM(13%), indicate more active microbiological processes that likely contribute to phosphorus incorporation into the DOM pool. Although these two samples present only a preliminary analysis of DOM in glacial/interglacial periods, the data indicate a need to expand the analysis into a broader range of ice-core samples, geographical locations, and glacial/interglacial periods.  相似文献   
10.
         下载免费PDF全文
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe conveyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temperature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is established based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号