首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 111 毫秒
1.
利用1979—2010年ERA-Interim再分析资料、全球降水气候中心(Global Precipitation Climate Center,GPCC)的降水量资料和站点降水观测资料,通过引入水汽贡献率和水汽通过率,构建描述降水量对水汽源地蒸发量的敏感性指数等方法,揭示了8月流入低纬高原水汽的输送过程的气候特征,及其与8月低纬高原降水量极端异常的联系。结果表明:(1)8月流入低纬高原水汽的重要源地是中南半岛北部和华南一带的陆地区域,以及北部湾和孟加拉湾北部西南至东北的狭长海面。(2)8月流入低纬高原水汽的主要输送通道有两条:孟加拉湾上空狭长的西南季风;经17°N附近偏东季风在南海西北部110°E附近发生转向后的东南季风。那加丘陵和中南半岛北部的纵向岭谷明显阻挡了两支水汽输送通道。(3)8月流入低纬高原水汽主要受大气环流影响,受水汽源地蒸发量的直接影响有限。当流入低纬高原水汽异常偏多(少)时,使得可降水量偏多(少),最终导致降水量偏多(少)。  相似文献   

2.
采用1983—2002年NCEP/NCAR再分析资料和我国660站降水资料,对我国东部季风湿润区夏季水汽收支变化与大气环流和我国降水异常特征的关系进行研究。结果表明:20世纪80—90年代夏季水汽收支时间序列表现出明显的年代际变化增加趋势,与降水时间序列的相关系数为0.71;水汽收支高值、低值年代不仅能够指示季风湿润区经向风的异常变化,还能够指示东亚夏季风的强弱和降水异常变化。合成的水汽输送年代际异常在东亚—西太平洋区表现为4个异常环流,异常水汽通量辐合区位于长江流域及以南地区。水汽收支高值年代,亚洲大陆高纬度地区低压偏弱,大陆表面温度及西太平洋海温偏高,我国东部沿海盛行异常偏南风,低层气流辐合、高层气流辐散强,垂直上升运动强烈;低值年代则相反。合成的经向水汽收支占总收支的71.3%,合成的异常降水量最大达100 mm以上。  相似文献   

3.
The interannual and intermonthly climatic features of the water vapor content(hereafterWVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)arecalculated and analyzed by using the NCEP/NCAR global reanalysis grid data(2.5°×2.5°Lat/Lon)for 40 years(1958—1997).The results show that the WVC in the total air column over NWC infour seasons of the year is mainly concentrated on eastern and western NWC respectively.On theaverage,the WVC over eastern NWC decreases obviously during recent forty years except forwinter.while it decreases over western NWC in the whole year.But the WVC over NWC has beenincreasing since late 1980s in summer.The water vapor comes from the southwestern warm andwet air current along the Yarlung Zangbo River Valley and the Bay of Bengal.and from mid-western Tibetan Plateau and also from the Qinling Mountains at southern Shaanxi Province.Theyearly water vapor divergence appears over the middle of NWC to northern Xinjiang andsoutheastern Shaanxi Province.The yearly water vapor convergence appears over the Tarim Basinand the Tibetan Plateau as well as western Sichuan and southern Gansu.  相似文献   

4.
利用2000年6月1日~8月11日北京地区地基全球定位系统(Globe Positioning System)网遥感大气总水汽量试验的观测资料,分析了北京地区夏季大气总水汽量的时空变化,研究了大气总水汽量与日平均温度、地面水汽压和降水的关系.研究结果表明:大气总水汽量存在明显的时空变化,对于地理位置基本相近的台站,海拔高度的影响比较明显,一般情况下高山站的水汽总量低于平原站;在晴天,地面水汽压与大气总水汽量有较好的相关性,而在云雨日,由于高低层大气湿度的变化常常不同步,用地面水汽压估算的大气总水汽量具有较大的偏差;大气总水汽量短时间内的快速增加往往对应有降水过程出现,但总水汽量的大小与降水量之间并没有明显的相关,在降水预报中应综合考虑总水汽量的前期平均水平、短时的增幅和峰值大小等条件的影响.  相似文献   

5.
The seasonal and interannual variations of the water vapor content and its mean transfer in the atmosphere over East Gansu are calculated and analyzed by using the NCEP/NCAR global reanalysis grid data (2.5°×2.5°Lat./Lon.) for 55 yr (1948-2002). The results show that 1) the water vapor content within the whole layer atmosphere over East Gansu in the latest 55 yr exhibits decreasing trends except that in winter,which shows a notable increasing trend; 2) the annual average water vapor transport flux mainly comes from southeast and southwest, and decreased from southeast to northwest gradually; 3) on the average, the annual water vapor transport ux over East Gansu increases continuously with height in the lower and middle parts of troposphere, and reaches the maximum value at the layer of 500 hPa; 4) in East Gansu,the southeast and southwest boundaries are the main water vapor import boundaries and the northeast and northwest boundaries are the main water vapor export boundaries. The water vapor import and export quantities in summer months reach the maximum values of those in all months, that is, 886.0 and 754.5 mm, respectively; and 5) the annual water vapor import is 1579.5 mm and its export is 997.6 mm, indicating the import of water vapor is more than the export. The net water vapor import over the whole region is 581.9mm. which accounts for 36.8% of the annual total import. The net water vapor import in winter is 88.0 mm, which accounts for 15.1% of the total import. This value in spring increases obviously, which equals 240.7 mm and accounts for 41.4% of the total. The value in summer equals 131.5 mm and accounts for 22.6% of the total. The net water vapor import in autumn is 121.7 mm and accounts for 20.9% of the total import. It implies that there is a fairish potential water vapor resource that has great potential for arti cial precipitation enhancement over East Gansu Province.  相似文献   

6.
The water vapor budget and the cloud microphysical processes associated with a heavy rainfall system in the Dabie Mountain area in June 2008 were analyzed using mesoscale reanalysis data(grid resolution 0.03 × 0.03,22 vertical layers,1-h intervals),generated by amalgamating the local analysis and prediction system(LAPS).The contribution of each term in the water vapor budget formula to precipitation was evaluated.The characteristics of water vapor budget and water substances in various phase states were evaluated and their differences in heavy and weak rainfall areas were compared.The precipitation calculated from the total water vapor budget accounted for 77% of actual precipitation;surface evaporation is another important source of water vapor.Water vapor within the domain of interest mainly came from the lower level along the southern boundary and the lower-middle level along the western boundary.This altitude difference for water vapor flux was caused by different weather systems.The decrease of local water vapor in the middle-lower layer in the troposphere during the system development stage also contributed to precipitation.The strength and the layer thickness of water vapor convergence and the content of various water substances in the heavy rainfall areas were obviously larger than in the weak rainfall areas.The peak values of lower-level water vapor convergence,local water vapor income,and the concentration of cloud ice all preceded the heaviest surface rainfall by a few hours.  相似文献   

7.
北京一次大暴雨的水汽收支和微物理过程数值分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用NCEP1°×1°再分析资料和常规气象观测资料,使用WRF模式对2012年7月21日发生在北京地区的一次特大暴雨天气过程进行数值模拟。在模拟结果的基础上,分析了此次暴雨过程的形势演变和水汽条件,并分别计算了暴雨发生过程中北京全市范围内的水汽输送、水汽收支、大气可降水量和空中各相态水物质的量值大小、空间分布情况及其相互转化关系。结果发现:这次降水主要受高空槽、低涡和地面切变线的影响。有东南、西南两条水汽输送通道,计算区域上空水汽收支变化与地面雨强的演变对应很好。中低层持续而强烈的水汽净输入,为暴雨的发生发展提供了很好的水汽条件。北京各站点大气可降水量普遍超过历史极值,反映了降水的极端性。降水发展不同阶段,云内微物理过程存在差异,降水量初期以暖雨为主,降雨量不大,之后冷雨过程增强,降水量迅速增大。  相似文献   

8.
利用地基GPS技术反演得到的大气可降水量资料、FY-2C卫星水汽图以及NCEP 1°×1°再分析资料,分析了2008年9月23—26日成都地区一次持续性暴雨的水汽特征。结果表明,降雨期间的水汽主要由来自孟加拉湾的暖湿气流和来自"黑格比"台风的高低空急流组成;暴雨发生前对流层中低层水汽充足,大气层结极不稳定,水平风的垂直切变较明显;高时间分辨率的地基GPS资料不仅可获得水汽实时变化的信息,而且对于暴雨发生时间和暴雨强度都有一定的指示性;结合中尺度数值模拟的结果,发现此次暴雨过程中可降水量的变化能反映区域水汽辐合辐散的变化,降水与否或降水大小不仅取决于大气中水汽含量的多少,更受到大气动力和热力条件的影响,水汽辐合的强弱具有关键作用。  相似文献   

9.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

10.
青藏高原大气总水汽量的反演研究   总被引:2,自引:11,他引:2  
利用2001年青藏高原89个气象站资料、NCEP格点再分析资料以及2001—2003年7月3个地基GPS站的大气总水汽量观测资料,对GPS遥感的大气总水汽量与探空观测结果做了比较,研究了大气总水汽量变化对降雨形成的影响,大气总水汽量与地面水汽压的关系,分析了青藏高原大气总水汽量的时空变化特征及其成因。结果表明:GPS遥感的大气总水汽量与探空观测结果吻合得较好,2001年那曲站两种结果相比均方根误差仅0.15 cm;大气总水汽量与地面水汽压之间有良好的相关关系;不同季节高原上基本都存在3个明显的大气总水汽量高值中心:即东南部、西南部和西北部;高原大气总水汽量分布的季节变化与500 hPa风场及整层大气水汽通量的变化关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号