首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
全球植被与大气之间碳通量的模式估计(英文)   总被引:1,自引:0,他引:1  
用大气植被相互作用模式(AVIM)模拟了全球陆地植被的净初级生产力(NPP)。AVIM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13gCm-2yr-1,不同植被类型的平均 NPP变化范围在99.58 g Cm-2yr-1(苔原)到996.2 g Cm-2yr-1(热带雨林)之间。全球年总NPP为60.72GtCyr-1,其中最大的部分为热带雨林,15.84GtCyr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

2.
6kaBP中国陆地生态系统净初级生产力的模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用植被与大气相互作用模式(AVIM)模拟了全新世中期(6 kaBP)及现代中国陆地植被净初级生产力(NPP)的大小与分布特征,计算了以上两个时期我国陆地植被NPP的碳总量。结果表明:全新世中期以来气候的变化是影响我国陆地植被NPP变化的主要原因,6 kaBP时期NPP平均值为409 g/(m2·a), NPP碳总量为3.89 Pg/a,分别比现在高15%和19%。全新世中期至今,我国陆地植被NPP的变化特征与对应时期中国土壤碳储量的变化趋势具有很好的一致性,这表明了利用生态模式模拟长时间尺度下我国陆地植被NPP的变化特征是可行的。  相似文献   

3.
利用一套高分辨率的气候驱动场和全球动态植被模型LPJ-WHyMe(Lund-Potsdam-Jena-Wetland Hydrology and Methane),模拟了中国东北地区潜在植被分布,并对中国东北地区1997~2010年平均净初级生产力(Net Primary Production, NPP)、净生态系统生产力(Net Ecosystem Production, NEP)、燃烧面积、火灾碳排放、土壤温度和土壤湿度进行了估算。LPJ-WHyMe的特点在于能够描述冻融的物理过程以及土壤中多层的湿度和温度。数值结果表明,在LPJ-WHyMe模型提供的植被功能类型(Plant Function Type, PFT)划分的条件下,中国东北地区主要分布了5种植被功能类型,即温带夏绿阔叶林带、北方常绿针叶林带、北方夏绿针叶林带、北方夏绿阔叶林带和温带草本植物。在研究时间段内,中国东北地区NPP的年平均值为376 g(C) m-2,变化范围在324.15~424.86 g(C) m-2之间。火灾机制的引入使得LPJ-WHyMe模型对NEP的模拟能力进一步提高,即NEP年平均值为42.36 g(C) m-2,表明中国东北地区陆地生态系统总体表现为“碳汇”。中国东北地区年平均燃烧面积分数为0.84%,火灾碳排放量为42.41 g(C) m-2,整体上模型高估了燃烧面积值和火灾碳排放量,模型对东北地区火灾的模拟仍然存在一定的局限性。中国东北地区土壤温度与气温呈正相关关系,且各层土壤温度与气温的相关性随着深度的增加而减弱。中国东北地区土壤湿度与降水呈正相关关系,土壤湿度与气温呈反相关关系。上述结果表明LPJ-WHyMe模型模拟中国东北地区潜在植被分布和碳循环是有效的。  相似文献   

4.
利用一个基于过程的动态植被模型LPJ DGVM(Lund-Potsdam-Jena Dynamic Global Vegetation Model),模拟了中国区域潜在植被分布,考察了1981~1998年中国区域净初级生产力(NPP)、异养呼吸(Rh)和净生态系统生产力(NEP)的年际变化。模拟结果表明,在LPJ模型提供的植被功能类型(PFT)划分的条件下,中国区域除了分布裸土外,主要分布了6种潜在植被功能类型,即热带常绿阔叶林带、温带常绿阔叶林带、温带夏绿阔叶林带、北方常绿针叶林带、北方夏绿针叶林带和温带草本植物。在所考察的时间段内,中国区域总NPP从2.91Gt.a-1(C)(1982年)变化到3.37Gt.a-1(C)(1990年),平均每年增加0.025Gt(C),其平均增长率为0.96%。中国区域总Rh从2.59Gt.a-1(C)(1986年)变化到3.19Gt.a-1(C)(1998年),具有1.05%的平均年增长率,即平均每年增加0.025Gt(C),并且中国区域温带草本植物相比其他植被功能类型,其NPP和Rh线性增加的趋势最为显著。研究结果还表明,LPJ模型在引入火灾机制后,中国区域总NEP的...  相似文献   

5.
利用6个地球系统模式模拟的植被净初级生产力(NPP)对1901~2005年NPP时空变化进行了研究,并结合气候因子分析了NPP的变化与气温和降水的关系。结果表明:(1)近百年来全球NPP呈现上升趋势,模式集合平均的趋势系数为0.88,通过了99.9%的信度检验;北半球的趋势比南半球明显。(3)近百年来800 g(C) m-2 a-1以上的NPP高值区主要分布在南美洲赤道地区、非洲赤道地区、中南半岛和印度尼西亚一带的热带雨林区;低值区主要分布在北半球高纬度地区、非洲北部地区、亚洲大陆干旱半干旱区以及青藏高原西北部地区。(3)全球NPP与气温百年演变在大部分地区主要为正相关关系,仅在赤道附近的南美洲、非洲以及印度地区为负相关关系,主要由于这些地区辐射是NPP的限制因子。全球NPP与降水的百年变化在大部分地区也主要是正相关关系,在非洲北部到西亚中亚的干旱半干旱地区为负相关关系。(4)6个地球系统模式在全球21个区域的大部分地区的NPP和气温降水的变化关系较为一致,西非地区不同模式变化不一致,NPP模拟的不确定性较大,其次是地中海地区。(5)东亚地区NPP与气候的百年演变同步并且相关性高,反映了强烈的植被大气相互作用过程。  相似文献   

6.
我国南水北调东线地区陆地植被NPP变化特征   总被引:7,自引:0,他引:7       下载免费PDF全文
 基于EOS/MODIS(TERRA)卫星遥感资料,讨论中国南水北调东线地区陆地植被年均净初级生产力(NPP)的变化特征。结果表明,2000-2004年该地区的陆地植被年均NPP的变化范围为0~1494 g/(m2·a),5 a平均值为395.06 g/(m2·a)。对不同植被的年均NPP分析表明,常绿阔叶林的NPP最大,草地最小。气温是影响该地区陆地植被NPP变化的主要因素,未来南水北调东线地区地表水资源的减少不会对陆地植被的生长产生明显影响。  相似文献   

7.
含有动态植被过程的陆面模式Atmosphere-Vegetation Interaction Model(AVIM)与中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(IAP/LASG)的9层大气环流模式AGCM 及20层的海洋环流模式(OGCM)耦合,建立了一个全球模式(GoALS-AVIM)并进行100年的模拟积分.后40年的结果分析表明,该耦合模式能够合理地模拟大气及陆地生态系统显著的年际变化.用奇异值分解(SVD)分析了东亚地区植被生长和气候变化的相互关系,发现在东业区域的植被净初级生产力(NPP)强弱的变化对血着大气环流的变化,特别是NPP分别与850 hPa的风场和500 hPa的高度场表现出很强的时空一致性.在东亚地区,由于植被类型的不同,导致NPP年际变化与降水、表面气温、短波辐射的年际变化的相关性不同,它们的年际变化与相关物理量场的年际变化表现出很强的植物种类的区别.  相似文献   

8.
东亚地区陆地生态系统的时空变率表现出明显的对季风气候的响应特征。使用EOF(经验正交分解)方法分析了AVIM2动态植被陆面模式离线模拟试验模拟的1953~2004年东亚季风区夏季陆地生态系统总初级生产力(GPP)、生态系统净初级生产力(NPP)、净生态系统初级生产力(NEP)、植被呼吸以及土壤呼吸的时空分布特点,探讨了东亚夏季风对陆地生态系统碳循环影响机制。研究发现,在强季风年,江淮地区高温少雨的特点限制了光合作用,造成GPP偏低;而华南地区在强季风年气候温暖湿润,利于植被生长,GPP偏高。季风对于植被呼吸和土壤呼吸影响不明显,使得GPP和植被呼吸之差NPP的变化及NPP和土壤呼吸之差NEP的变化与GPP的变化保持一致。在强季风年江淮流域地区干热的气候条件使得NPP和NEP降低;但是在华南地区温度升高的同时降水增多使得在NPP偏高的基础上NEP也偏高。  相似文献   

9.
本文基于北京325米气象塔在47,140,和280米三层高度的5年涡动相关观测资料,研究了城市下垫面与大气间的CO2交换过程.由于北京市2011年开始实行工作日汽车尾号限行,140米高度CO2通量的年增长率由2008-2010年的7.8%降低到2010-2012年的2.3%.140米高度通量源区内植被比例最小且人口密度最大,因此140米高度的5年平均CO2通量年总量)6.41 kg C m-2 yr-1(大于47米)5.78 kg C m-2 yr-1(和280米)3.99 kg C m-2 yr-1(.在年尺度上,北京汽车总保有量和总人口是最重要的CO2通量控制因子.CO2通量随风向的变化主要与风向对应的通量源区内下垫面土地利用方式有关.三层高度的夏季CO2通量均与道路的比例呈正相关关系.47,140,和280米的决定系数分别为0.69,0.57,和0.54(P<0.05).植被比例的下降,会导致CO2年总量上升,两者存在近似于指数的关系.城市人口密度的上升会引起CO2年总量上升.  相似文献   

10.
本研究通过集成Terra MODIS卫星影像数据与地面通量台站的观测数据, 改进了基于遥感的VPM光能利用率模型, 模拟了我国北方地区2008年陆地生态系统总初级生产力 (GPP) 的空间分布与季节变化。研究表明: (1) 我国北方地区植被GPP在空间分布上表现为东高西低的特征, 年均值为518.36 g/m2 (C重量, 下同)。 (2) 我国北方地区主要植被类型的GPP有较强的季节动态, 大体上都表现出单峰变化趋势。GPP值按照由大到小顺序依次为: 夏绿阔叶林 (DBF)>针阔混交林 (MF)>农田 (Crop)>落叶针叶林 (DNF)>常绿针叶林 (ENF)>草地 (Grass)>稀疏灌丛 (Oshrub)>裸地或稀疏植被 (BSV)。(3) 整个区域的GPP季相变化表现为: 夏季最高, 达到32.80 g?m-2?(8 d)-1, 为全年最大值; 春季GPP为5.67 g?m-2?(8 d)-1, 与秋季的5.08 g?m-2?(8 d)-1较为接近, 冬季GPP最弱, 仅为0.07 g?m-2?(8 d)-1。与通量台站实测值及前人研究结果的比较表明, 本文所模拟的GPP与观测值之间的相对误差绝对值多小于15%, 表明模拟结果具有较好的可靠性。这说明通过集成遥感观测数据与台站观测数据的方法来模拟GPP, 可以较准确地模拟区域尺度的GPP空间分布与时间变化, 这为深入研究陆气相互作用提供了重要研究手段。  相似文献   

11.
1. IntroductionAccording to the reconstruction of paleo-temperature based on δ18 O data of ice core in theGreenland (see Jouzel et al., 1987; Grootes et al.,1993; Blunier and Brook, 2001), the current inter-glacial epoch, the Holocene, began at ca. 11.5 thou-sand years before present (ka BP). Multiple sources(pollen data, macrofossils) reveal that the summer cli-mate in the Northern Hemisphere was warmer in theearly to middle Holocene (MH) (ca. 8-6ka BP) relativeto the present climate. …  相似文献   

12.
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.  相似文献   

13.
In Part I, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

14.
The CASA (Carnegie-Ames-Stanford) ecosystem model has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009, with global data inputs from NASA??s Terra Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover mapping. Net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and the western Amazon since the year 2000. These CASA results for global NPP were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by CASA for the southern and western Untied States, the southern Amazon, and southern and eastern Africa. NPP in tropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the tropical rainforest zones, likely due to the enhanced detection of lower production ecosystems replacing primary rainforest.  相似文献   

15.
季劲钧  余莉 《大气科学》1999,23(4):439-448
利用大气—植被相互作用模式(AVIM)研究地表面物理过程与生物地球化学过程耦合的机理和实现方法,其基础是植物与非生物环境之间物质和能量交换等物理过程影响植物的生理生长过程,使得植被宏观形态和相应的地表的动力学参数上发生显著变化,又反过来作用于植被与大气、土壤之间的物理交换过程。这种气候与生物圈双向反馈过程是在季节和年际时间尺度上的主要相互作用机理。应用AVIM于内蒙古半干旱草原,模拟了在大气状况强迫下,草原生态系统初级生产力,植被与大气之间CO2、潜热和感热的交换,揭示了地表物理和生物学过程耦合反馈机理。  相似文献   

16.
In Part Ⅰ, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

17.
We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号