首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.  相似文献   

2.
A set of numerical experiments is designed and carried out to understand a heat sink in the Southern Ocean in the recent hiatus decade. By using an oceanic general circulation model, the authors focus on the contributions from two types of forcing: wind stress and thermohaline forcing. The simulated results show that the heat sink in the upper Southern Ocean comes mainly from thermohaline forcing; while in the deeper layers, wind stress forcing also plays an important role. These different contributions may be due to different physical processes for the heat budget. The combination of these two types of forcing shows a significant heat sink in the Southern Ocean in the recent hiatus decade, and this is consistent with the observations and conclusions of a similar recently published study.  相似文献   

3.
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr.  相似文献   

4.
The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observational composite analyses reveal that the warm phase AMO is linked to warmer winters in East China, with enhanced precipitation in the north of this region and reduced precipitation in the south, on multidecadal time scales. The pattern is reversed during the cold phase AMO. Whether the AMO acts as a forcing of the multidecadal winter climate of East China is explored by investigating the atmospheric response to warm AMO SST anomalies in a large ensemble of atmospheric general circulation model (AGCM) experiments. The results from three AGCMs are consistent and suggest that the AMO warmth favors warmer winters in East China. This influence is realized through inducing negative surface air pressure anomalies in the hemispheric-wide domain extending from the midlatitude North Atlantic to midlatitude Eurasia. These negative surface anomalies favor the weakening of the Mongolian Cold High, and thus induce a weaker East Asian Winter Monsoon.  相似文献   

5.
A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridiflcation occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia  相似文献   

6.
A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.  相似文献   

7.
Changes of Air–sea Coupling in the North Atlantic over the 20th Century   总被引:1,自引:0,他引:1  
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.  相似文献   

8.
The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F~rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.  相似文献   

9.
A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant tem-perature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support thisdedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia hasbeen attributed to climate-induced aridification. A widespread alternation of the ancient cultures was alsofound in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeo-climatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the coldphase in millennial scale climate oscillations, which may be related to the modulation of the ThermohalineCirculation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment ofa GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop intemperature from North Europe, the northern middle East Asia, and northern East Asia and a significantreduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow RiverValley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by theweakening of the THC.  相似文献   

10.
郭准  周天军 《大气科学进展》2013,30(6):1758-1770
To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.  相似文献   

11.
The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001?C1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40?years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50?years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.  相似文献   

12.
We assess the responses of North Atlantic, North Pacific, and tropical Indian Ocean Sea Surface Temperatures (SSTs) to natural forcing and their linkage to simulated global surface temperature (GST) variability in the MPI-Earth System Model simulation ensemble for the last millennium. In the simulations, North Atlantic and tropical Indian Ocean SSTs show a strong sensitivity to external forcing and a strong connection to GST. The leading mode of extra-tropical North Pacific SSTs is, on the other hand, rather resilient to natural external perturbations. Strong tropical volcanic eruptions and, to a lesser extent, variability in solar activity emerge as potentially relevant sources for multidecadal SST modes’ phase modulations, possibly through induced changes in the atmospheric teleconnection between North Atlantic and North Pacific that can persist over decadal and multidecadal timescales. Linkages among low-frequency regional modes of SST variability, and among them and GST, can remarkably vary over the integration time. No coherent or constant phasing is found between North Pacific and North Atlantic SST modes over time and among the ensemble members. Based on our assessments of how multidecadal transitions in simulated North Atlantic SSTs compare to reconstructions and of how they contribute characterizing simulated multidecadal regional climate anomalies, past regional climate multidecadal fluctuations seem to be reproducible as simulated ensemble-mean responses only for temporal intervals dominated by major external forcings.  相似文献   

13.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

14.
 Effects of the seasonal variation in thermohaline and wind forcing on the abyssal circulation are investigated by using an ocean general circulation model. To isolate effects of the seasonality in the thermohaline forcing from those in the wind forcing, we carry out three experiments with (1) annual-mean wind forcing and perpetual-winter thermohaline forcing, (2) annual-mean wind forcing and seasonal thermohaline forcing, and (3) seasonal wind forcing and seasonal thermohaline forcing. The deep water under the seasonal thermohaline forcing becomes warmer than under the perpetual-winter thermohaline forcing. Although the perpetual-winter thermohaline forcing is widely used and believed to reproduce the deep water better than the annual-mean forcing, the difference between the results of the perpetual-winter and the seasonal thermohaline forcing is significant. The seasonal variation of the Ekman convergence and divergence produces meridional overturning cells extending to the bottom because the period of seasonal cycle is shorter than the adjustment timescale by baroclinic Rossby waves. The heat transport owing to those Ekman flows and temperature anomalies makes the upper water (0–200 m) colder at low to mid-latitudes (40S–40N) and warmer at high latitudes. Also the deep water becomes warmer owing to the warming of the northern North Atlantic, the main source region of North Atlantic Deep Water. The model is also synchronously (i.e., without acceleration) integrated with seasonal forcing for 5400 y. A past study suggested that under seasonal forcing, a sufficient equilibrium state can be achieved after only decades of synchronous integration following more than 10 000 y of accelerated integration. Here, the result so obtained is compared with that of the 5400-y synchronous integration. The difference in the global average temperature is as small as 0.12 °C, and most of the difference is confined to the Southern Ocean. Received: 1 May 1998 / Accepted: 5 January 1999  相似文献   

15.
Centennial climate variability during the Holocene has been simulated in two 10,000 year experiments using the intermediate-complexity ECBilt model. ECBilt contains a dynamic atmosphere, a global 3-D ocean model and a thermodynamic sea-ice model. One experiment uses orbital forcing and solar irradiance forcing, which is based on the Stuiver et al. residual 14C record spliced into the Lean et al. reconstruction. The other experiment uses orbital forcing alone. A glacier model is coupled off-line to the climate model. A time scale analysis shows that the response in atmospheric parameters to the irradiance forcing can be characterised as the direct response of a system with a large thermal inertia. This is evident in parameters like surface air temperature, monsoon precipitation and glacier length, which show a stronger response for longer time scales. The oceanic response, on the other hand, is strongly modified by internal feedback processes. The solar irradiance forcing excites a (damped) mode of the thermohaline circulation (THC) in the North Atlantic Ocean, similar to the loop-oscillator modes associated with random-noise freshwater forcing. This results in a significant peak (at time scales 200–250 year) in the THC spectrum which is absent in the reference run. The THC response diminishes the sea surface temperature response at high latitudes, while it gives rise to a signal in the sea surface salinity. A comparison of the model results with observations shows a number of encouraging similarities.  相似文献   

16.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

17.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

18.
金向泽  张学洪 《大气科学》1994,18(Z1):769-779
本文是用简单海一气耦合模型模拟温盐环流在全球增暖事件中作用的研究工作的第一部分。为了建立一个简单海一气耦合模型,我们首先根据Wright和Stoker等人的设计复制出一个包括大西洋、太平洋和南大洋在内的二维温盐环流模式,从等温、等盐和无运动的初始状态出发,在给定的年平均海表强迫下将模式积分了4000年,模拟出了和原作相似的温盐环流。对模拟结果的分析表明,相对于北太平洋而言,北大西洋北部的高盐、低温特点(后者是由两大洋在地理上的差别决定的)是形成当代温盐环流的主要原因;从与温盐环流相联系的海表热通量来看,北大西洋北部是向大气提供热量的主要源地;模式温盐环流对于海表盐度通量的敏感性试验的结果表明,对于纬圈平均的二维模式而言,要想模拟出合理的温盐环流就必须人为地提高北大西洋北部的海表盐度,文章分析了这种作法的物理根据;模式中的对流过程对于温盐环流的维持是至关重要的,对比有无季节循环的试验结果可以看出,虽然温度场的明显的季节变化只出现在模式的最上面两层,但由于引进季节循环后冬季高纬海洋的对流活动加强,后者直接影响到温盐环流,使更多的深海热量上传并向大气释放。这是使海洋温跃层得以保持合理.厚度的一个重要原因。  相似文献   

19.
Large-scale atmospheric patterns are examined on orbital timescales using a climate model which explicitly resolves the atmosphere–ocean–sea ice dynamics. It is shown that, in contrast to boreal summer where the climate mainly follows the local radiative forcing, the boreal winter climate is strongly determined by modulation of circulation modes linked to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) and the Northern/Southern Annular Modes. We find that during a positive phase of the AO/NAO the convection in the tropical Pacific is below normal. The related atmospheric circulation provides an atmospheric bridge for the precessional forcing inducing a non-uniform temperature anomalies with large amplitudes over the continents. We argue that this is important for mechanisms responsible for multi-millennial climate variability and glacial inception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号