首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of land cover change on the tropical circulation in a GCM   总被引:1,自引:1,他引:0  
Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.  相似文献   

2.
Land use and land cover change (LUCC) can modify the physical and thermodynamic characteristics of the land surface, including surface roughness, albedo, and vegetation fraction, among others. These direct changes can result in a series of impacts on regional climate. In this paper, the simulated results over China under the scenario of LUCC using weather research and forecasting model are presented. The period for the simulation is from December 2006 to December 2011. Two experiments are initialized by the LUCC datasets derived from the MODIS data of 2001 and 2008, respectively. The results show that the LUCC in most areas of China reduces the surface albedo and increases the surface temperature. Especially in the Hetao Plain, the magnitude of increased surface temperature is above 0.5 °C in winter, and the increase in winter is more obvious than in summer. The precipitation in the Hetao Plain increases. The sensible heat in most parts of East China is reduced, while the latent heat is increased in most areas of China.  相似文献   

3.
A series of 17-yr equilibrium simulations using the NCAR CCM3 (T42 resolution) were performed to investigate the regional scale impacts of land cover change and increasing CO2 over China. Simulations with natural and current land cover at CO2 levels of 280,355, 430, and 505 ppmv were conducted. Results show statistically significant changes in major climate fields (e.g. temperature and surface wind speed) on a 15-yr average following land cover change. We also found increases in the maximum temperature and in the diurnal temperature range due to land cover change. Increases in CO2 affect both the maximum and minimum temperature so that changes in the diurnal range are small. Both land cover change and CO2 change also impact the frequency distribution of precipitation with increasing CO2 tending to lead to more intense precipitation and land cover change leading to less intense precipitation-indeed, the impact of land cover change typically had the opposite effect versus the impacts of CO2. Our results provide support for the inclusion of future land cover change scenarios in long-term transitory climate inodelling experiments of the 21st Century. Our results also support the inclusion of land surface models that can represent future land cover changes resulting from an ecological response to natural climate variability or increasing CO2. Overall, we show that land cover change can have a significant impact on the regional scale climate of China, and that regionally, this impact is of a similar magnitude to increases in CO2 of up to about 430 ppmv. This means that that the impact of land cover change must be accounted for in detection and attribution studies over China.  相似文献   

4.
利用新一代中尺度研究和预报模式(Weather Research and Forecasting Model,简称WRF)分别耦合多冠层、单冠层和平板模式三种情况进行南京地区2007年8月1日的天气过程模拟,分析不同城市冠层方案对南京气象场的模拟效果。在此基础上,结合模拟效果最好的城市冠层方案,研究南京城市下垫面的变化对其热岛的影响。结果表明:多冠层方案对近地面气温、10 m风场的模拟效果最好;城区的扩张使南京地区近地面气温升高,主要表现为城市区域夜间升温显著,并且导致热岛强度明显增强;城市扩张后,城区白天风速大范围地减小,同时热岛环流更加显著,且具有明显的城市热岛的"下游效应"。  相似文献   

5.
6.
7.
The equilibrium response of atmospheric circulation to the direct radiative effects of natural or anthropogenic aerosols is investigated using the Community Atmosphere Model (CAM3) coupled to two different ocean boundary conditions: prescribed climatological sea surface temperatures (SSTs) and a slab ocean model. Anthropogenic and natural aerosols significantly affect the circulation but in nearly opposite ways, because anthropogenic aerosols tend to have a net local warming effect and natural aerosols a net cooling. Aerosol forcings shift the Intertropical Convergence Zone and alter the strength of the Hadley circulation as found in previous studies, but also affect the Hadley cell width. These effects are due to meridional gradients in warming caused by heterogeneous net heating, and are stronger with interactive SST. Aerosols also drive model responses at high latitudes, including polar near-surface warming by anthropogenic aerosols in summer and an Arctic Oscillation (AO)-type responses in winter: anthropogenic aerosols strengthen wintertime zonal wind near 60°N, weaken it near 30°N, warm the troposphere, cool the stratosphere, and reduce Arctic surface pressure, while natural aerosols produce nearly opposite changes. These responses are shown to be due to modulation of stratospheric wave-driving consistent with meridional forcing gradients in midlatitudes. They are more pronounced when SST is fixed, apparently because the contrast in land-ocean heating drives a predominantly wavenumber-2 response in the northern hemisphere which is more efficient in reaching the stratosphere, showing that zonal heating variations also affect this particular response. The results suggest that recent shifts from reflecting to absorbing aerosol types probably contributed to the observed decadal variations in tropical width and AO, although studies with more realistic temporal variations in forcing would be needed to quantify this contribution.  相似文献   

8.
We have undertaken a comparative study of the mechanisms which drive the response of the Atlantic thermohaline circulation (THC) to a fourfold increase in CO2 over 70 years with stabilisation thereafter in HadCM2 and HadCM3. In both models, the THC changes are driven by surface flux forcing, with advection (and diffusion in HadCM2) acting in the opposite sense to limit the circulation change. In both cases, heat fluxes are more important than those of freshwater. We find that different patterns of heat flux forcing in HadCM2 and HadCM3 are the prime determinants of the differing response in the two models. The increased northerly component to the near surface winds (associated with an increase in reflective low level cloud), leads to enhanced heat loss in the west-central North Atlantic, which in turn tends to steepen the steric gradient and strengthen the THC. By contrast, in HadCM3 the winds become more westerly rather than northerly, there is no dynamically-forced enhancement of surface heat loss, and the heat flux in the North Atlantic continues to be strongly positive, relative to the control, leading to a reduction in the meridional steric gradient, and a weaker overturning circulation. Differences in atmospheric response patterns appear to be caused by improvements to atmospheric and land surface physics, and suggest that the THC response in HadCM2 is less credible than in HadCM3.  相似文献   

9.
The seasonal stability of snow cover (ISS) was defined as a percentage ratio of the real and the potential snow cover duration in a winter season. Main results of the study are as follows: (1) alternately occurring periods of high and low values of the index of snow cover stability did not appeared simultaneously in mountainous and non-mountainous areas; (2) in the majority of Poland area both zonal and meridional components of the atmospheric circulation influence the ISS; however, in south the meridional air flow reveals the stronger impact, mostly due to the intensification of the southern advection by the foehn effect; and (3) changes of two or three indices describing atmospheric circulation explain up to 50 % of the ISS in Poland. The diminishing stability of snow cover in Poland corresponds with an increasing intensity of the advection from the western sector in winter in the second half of the twentieth century in Europe.  相似文献   

10.
In this study, we investigate the impact of atmospheric convection over the western tropical Pacific (100–145°E, 0–20°N) on the boreal winter North Pacific atmosphere flow by analyzing National Center for Environmental Prediction Reanalysis 1, Extended Reconstructed Sea Surface Temperature and Global Precipitation Climatology Project data. The western tropical Pacific convection is not only the main energy source driving the local Hadley and Walker circulations, but it also significantly influences North Pacific circulation, by modifying a mid-latitude Jet stream through the connection with the local Hadley circulation. On the one hand, this strong convection leads to a northward expansion of local Hadley cells simultaneous with a northward movement of the western North Pacific jet because of the close correlation between the Jet and Hadley circulation boundaries. On the other hand, this strong convection also intensifies tropical Pacific Walker circulation, which reduces the eastern Pacific sea surface temperature, resembling a La Nina state through the enhanced equatorial upwelling. The cooling of the eastern tropical Pacific has an inter-tropical convergence zone located further north; thus, the local Hadley circulation moves northward. As a result, the jet axis over the eastern North Pacific, which also corresponds to the boundary of the local Hadley circulation, moves to higher latitude. Consequently, this northward movement of the Jet axis over the North Pacific is reflected as a northwest–southeast dipole sea level pressure (SLP) pattern. The composite analysis of SLP over the North Pacific against the omega (Ω) (Pa/s) at 500 hPa over the western tropical Pacific actually reveals that this northwest-southeast dipole structure is attributed to the intensified tropical western Pacific convection, which pushes the Pacific Jet to the north. Finally we also analyzed south Pacific for the austral winter as did previously to North Pacific, and found that the results were consistent.  相似文献   

11.
Land cover is a crucial, spatially and temporally varying component of global carbon and climate systems. Therefore accurate estimation and monitoring of land cover changes is important in global change research. Although, land cover has dramatically changed over the last few centuries, until now there has been no consistent way of quantifying the changes globally.In this study we used long-term climate, soils data along with coarse resolution satellite observations to quantify the magnitude and spatial extent of global land cover changes due to anthropogenic processes. Differences between potential leaf area index, derived from climate-soil-leaf area equilibrium and actual leaf area index obtained from satellite data were used to estimate changes in land cover.Forest clearing for agriculture and irrigated farming in arid and semi-arid lands are found to be two major sources of climatically important land cover changes. Satellite derived Spectral Vegetation indices (SV I) and surface temperatures (T s) show strong impact of land cover changes on climatic processes. Irrigated agriculture in dry areas increased energy absorption and evapotranspiration (ET) compared to natural vegetation. On the other hand, forest clearing for crops decreased energy absorption andET. A land cover classification and monitoring system is proposed using satellite derivedSV I andT s that simultaneously characterize energy absorption and exchange processes. This completely remote sensing based approach is useful for monitoring land cover changes as well as their impacts on climate. Monitoring the spatio-temporal dynamics of land cover is possible with current operational satellites, and could be substantially improved with the Earth Observing System (EOS) era satellite sensors.  相似文献   

12.
The East Pacific wavetrain(EPW) refers to here the intense stationary wave activity detected in the troposphere over the East Pacific and North America in 45 northern winters from 1958 to 2002.The EPW is generated in the lower troposphere over the East Pacific,propagating predominantly eastward into North America and slightly upward then eventually into the stratosphere.The intensity of the EPW varies from year to year and exhibits apparent decadal variability.For the period 1958-1964,the EPW was in its second maximum,and it was weakest for the period 1965-1975,then it was strongest for the period 1976-1987.After 1987,the EPW weakened again.The intensity and position of the members(i.e.,the Aleutian low,the North American trough,and the North American ridge) of the EPW oscillate from time to time.For an active EPW versus a weak EPW,the Aleutian low deepens abnormally and shifts its center from the west to the east of the date line,in the middle and upper troposphere the East Asian trough extends eastward,and the Canadian ridge intensifies at the same time.The opposite is true for a weak EPW.Even in the lower stratosphere,significant changes in the stationary wave pattern are also observed.Interestingly the spatial variability of the EPW assumes a Pacific-North American(PNA)-like teleconnection pattern.It is likely that the PNA low-frequency oscillation is a reflection of the oscillations of intensity and position of the members of the EPW in horizontal direction.  相似文献   

13.
Leads and polynyas have a great impact on the energy budget of the polar ocean and atmosphere. Since atmospheric general circulation models are not able to resolve the spatial scales of these inhomogeneities, it is necessary to include the effect of fractional sub-grid scale sea-ice inhomogeneities on climate by a suitable parametrization. In order to do this we have divided each model grid-cell into an ice-covered and an ice-free part. Nevertheless, a numerical model requires effective transports representative for the whole grid-box. A simple procedure would be to use grid averages of the surface parameters for the calculation of the surface fluxes. However, as the surface fluxes are non-linearly dependent on the surface properties, the fluxes over ice and open water should be calculated separately according to the individual surface-layer structure of each surface type. Then these local fluxes should be averaged to obtain representative fluxes. Sensitivity experiments with the Hamburg atmospheric general circulation model ECHAM3 clearly show that a subgrid scale distribution of sea ice is a dominant factor controlling the exchange processes between ocean and atmosphere in the Arctic. The heat and water vapour transports are strongly enhanced leading to a significant warming and moistening of the polar troposphere. This affects the atmospheric circulation in high- and mid-latitudes; e.g. the stationary lows are modified and the transient cyclonic activity over the subpolar oceans is reduced. A pronounced impact of sub-grid scale sea-ice distribution on the model climate can only be obtained when the non-linear behaviour of the surface exchange processes is considered by a proper, physically based, averaging of the surface fluxes. A simple linear averaging of surface parameters is not sufficient. Received: 13 September 1994 / Accepted: 25 July 1995  相似文献   

14.
15.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

16.
Modeling land use and cover as part of global environmental change   总被引:9,自引:0,他引:9  
Land use and cover changes are important elements of the larger problem of global environmental change. Landuse patterns result in landcover changes that cumulatively affect the global biosphere and climate. We describe efforts to analyze the driving forces behind land transformations and to create land use models that can be linked to other types of global change models. Two efforts to model land use in the U.S. are reviewed. One projects aggregate agricultural, forest, and range land, and the other attempts to model forest land use change at the parcel scale in two mountain landscapes. We conclude with suggestions for new approaches that could clarify the role of land use/cover change in global change and in natural resources management.  相似文献   

17.
The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.  相似文献   

18.
The development of the future atmospheric chemical composition is investigated with respect to NO y and O3 by means of the off‐line coupled dynamic‐chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO x and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO x and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamical parameters, like precipitation and changes in the circulation, diabatic circulation, stratosphere‐troposphere‐exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate‐chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major rôle for the composition of the future atmosphere, but they also clearly show that climate change (B and C) has a significant impact and strongly reduces the NO y and ozone concentration in the lower stratosphere.  相似文献   

19.
Using a climate model with a sophisticated land surface scheme, simulations were conducted to explore the impact of increases in leaf-level carbon dioxide (CO2) on evaporation, temperature and other land surface quantities. Fifty-one realizations were run, for each of four Januarys and four Julys for CO2 concentrations at leaf-level of 280, 375, 500, 650, 840 and 1,000 ppmv. Atmospheric CO2 concentration was held constant at 375 ppmv in all experiments. Statistically significant decreases in evaporation and increases in temperature occur in specific regions as leaf-level CO2 is increased from 280 to 375 ppmv. These same areas expand geographically, and the magnitude of the changes increase as leaf-level CO2 is increased further suggesting that changes are caused by the increase in leaf-level CO2 and are not internal model variability. As leaf-level CO2 is increased further, larger areas of the continental surface are affected by increasing amounts and a statistically significant change in precipitation is seen. The increase in leaf-level CO2 from 280 ppmv to 375 ppmv causes statistically significant changes in the evaporation over 12% of continental surfaces in July. This increases to 25% at 500 ppmv, 35% at 650 ppmv, 41% at 840 ppmv and 47% at 1,000 ppmv. This affects temperature and rainfall by similar amounts, generally in coincident regions. An analysis of these results over key regions shows that the probability density functions of the latent heat flux and temperature are affected non-uniformly. There is a shift in the latent heat flux probability density function to lower values, mainly through the reduction in the upper tail of the distribution. The temperature probability density function shifts to higher values, mainly through an increase in the upper tail of the distribution indicating that the impact is focussed on extremes. Given that there are a suite of well evaluated land surface models that include the biogeochemical effects of increasing CO2 we suggest that the inclusion of such a model should be a recommended component of climate models used in future assessment reports by the Intergovernmental Panel on Climate Change.  相似文献   

20.
This study assesses the sensitivity of the fully coupled NCAR-DOE PCM to three different representations of present-day land cover, based on IPCC SRES land cover information. We conclude that there is significant model sensitivity to current land cover characterization, with an observed average global temperature range of 0.21 K between the simulations. Much larger contrasts (up to 5 K) are found on the regional scale; however, these changes are largely offsetting on the global scale. These results show that significant biases can be introduced when outside data sources are used to conduct anthropogenic land cover change experiments in GCMs that have been calibrated to their own representation of present-day land cover. We conclude that hybrid systems that combine the natural vegetation from the native GCM datasets combined with human land cover information from other sources are best for simulating such impacts. We also performed a prehuman simulation, which had a 0.39 K ~higher average global temperature and, perhaps of greater importance, temperature changes regionally of about 2 K. In this study, the larger regional changes coincide with large-scale agricultural areas. The initial cooling from energy balance changes appear to create feedbacks that intensify mid-latitude circulation features and weaken the summer monsoon circulation over Asia, leading to further cooling. From these results, we conclude that land cover change plays a significant role in anthropogenically forced climate change. Because these changes coincide with regions of the highest human population this climate impact could have a disproportionate impact on human systems. Therefore, it is important that land cover change be included in past and future climate change simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号