首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王春晓  田文寿 《大气科学》2017,41(2):275-288
利用2005~2014年10年的卫星微波临边探测仪(MLS)资料分析了热带平流层一氧化碳(CO)体积混合比的年际变率,发现热带平流层CO浓度的准两年振荡(QBO)在30 hPa高度附近存在明显的位相变化特征。大气化学气候模式模拟结果表明,热带平流层CO的准两年振荡信号是化学和动力过程共同作用的结果,而动力作用主要是QBO引起的次级经向环流引起的物质传输。化学和动力过程共同作用导致热带平流层CO浓度的垂直梯度在30 hPa高度处发生反转,进而产生一氧化碳QBO信号的位相变化。此外,化学气候模式模拟结果还表明,与CO有关的化学过程不但可以减弱一氧化碳QBO信号的振幅,还可以在热带30~10 hPa高度范围内造成一氧化碳QBO和纬向风QBO信号之间约3个月的时间差。  相似文献   

2.
本文综述了近年来关于平流层大气动力学及其与对流层大气相互作用动力过程的研究进展,特别是回顾了近年来关于平流层大气环流和行星波动力学、热带平流层大气波动及其与基本气流相互作用、平流层大气环流变异对对流层环流和气候变异的影响及其动力过程、平流层大气数值模拟以及在全球变暖背景下平流层大气的长期演变趋势预估等的研究进展。最近的研究揭示了大气准定常行星波传播波导的振荡现象、重力波在热带平流层准两年振荡和全球物质输送中的作用、平流层长期的变冷趋势变化、平流层在对流层天气和气候变化中的作用等现象,表明了平流层大气动力学研究的重要性。平流层大气动力学的深入研究,以及对数值模式中平流层模拟性能的提高,最终都会推动整个大气科学和气候变化研究的进一步发展。  相似文献   

3.
准两年振荡及其对东亚大气环流和气候的影响   总被引:13,自引:6,他引:13  
李崇银  龙振夏 《大气科学》1992,16(2):167-176
通过多年资料分析,本文研究了平流层准两年振荡(QBO)的演变特征及其对东亚及西太平洋地区大气环流和气候变化的影响.结果表明,平流层QBO的演变特征是:东风向西风转换最早出现在印度洋赤道地区;西风向东风转换最早出现在美洲和西太平洋赤道地区.中国东部降水量、气温以及西太平洋副高和东亚急流都有准两年周期变化,并同平流层QBO有密切关系;平流层QBO对西太平洋台风活动也有一定影响,QBO的西风位相期西太平洋台风偏少.另外,ENSO对于平流层QBO有明显影响,一般在ENSO发生之后,QBO的西风位相期持续时间缩短.  相似文献   

4.
利用观测和再分析资料通过合成分析方法,研究了中部型ENSO和平流层准两年振荡(QBO)对冬季北半球平流层臭氧的独立影响和联合调制作用。研究表明,北半球平流层臭氧在中部型厄尔尼诺年增加,而在中部型拉尼娜年减少;准两年振荡东风位相年份,北半球平流层臭氧增加,准两年振荡西风位相结果则相反。相比之下,北半球中、高纬度平流层臭氧异常对准两年振荡活动的响应明显小于其对ENSO活动的响应。进一步研究发现,准两年振荡东风位相会加强中部型厄尔尼诺事件引起的北半球平流层臭氧的增加,而减弱中部型拉尼娜事件造成的平流层臭氧的减少。在准两年振荡西风位相下,中部型厄尔尼诺事件仅导致北半球平流层臭氧含量少量升高,而中部型拉尼娜事件期间臭氧会大幅度减少。因此,准两年振荡东风位相会加强中部型厄尔尼诺事件对北半球平流层臭氧的影响,而减弱中部型拉尼娜事件对北半球平流层臭氧的影响。准两年振荡西风位相会减弱中部型厄尔尼诺而加强中部型拉尼娜事件对北半球平流层臭氧的影响。   相似文献   

5.
青藏高原臭氧的准两年振荡   总被引:2,自引:2,他引:2       下载免费PDF全文
通过对臭氧卫星观测资料及大气环流资料的分析,研究了青藏高原上空臭氧的季节和年际变化.通过分析青藏高原地区臭氧准两年振荡(QBO),并与同纬度无山区及赤道地区臭氧QBO进行比较,指出:青藏高原臭氧QBO的平均周期为29个月,平均振幅为8DU.青藏高原臭氧QBO变化位相与热带平流层纬向风场QBO相反,即热带平流层纬向西风时,青藏高原上空臭氧总量偏小,东风时臭氧总量偏大.还讨论了与青藏高原臭氧QBO相关的大气环流物质输送理论.  相似文献   

6.
西太平洋副高活动与平流层QBO关系的研究   总被引:10,自引:1,他引:10       下载免费PDF全文
李崇银  龙振夏 《大气科学》1997,21(6):670-678
资料分析表明,西太平洋副高活动有准两年振荡特征,副高的相对强度和副高脊线的纬度位置都清楚地表现出这种振荡。而且分析还表明,平流层低层纬向风的垂直切变同西太平洋副高活动有关,东(西)风切变对应着脊线位置偏北的较强(弱)副高形势。平流层低层东(西)垂直切变在赤道对流层上部所引起的异常上升(下沉)运动,导致Hadley环流的异常加强(减弱)可能是平流层QBO影响西太平洋副高准两年振荡的重要机制。用IAP-GCM所作的数值模拟试验得到了同观测资料分析相一致的结果。  相似文献   

7.
准两年振荡对大气中微量气体分布的影响   总被引:11,自引:5,他引:6  
张弘  陈月娟  吴北婴 《大气科学》2000,24(1):103-110
NCAR的包含化学、辐射、动力相互作用的两维模式(SOCRATES)移植回国后进行了初步的模拟试验,用以研究某些对环境问题重要的微量气体的化学、辐射、动力传输过程。在不考虑极地平流层云和气溶胶表面非均相化学等情况下,模式积分多年,计算结果稳定,模拟的风场、温度场显示出正常的季节变化,模拟的微量气体分布与卫星实测资料对照,结果也比较一致。为了探讨热带平流层风场的准两年周期振荡(QBO)对平流层微量气体分布的影响,我们做了QBO强迫的数值试验,即在模式中加入QBO强迫,并与不考虑QBO强迫的模拟结果对比。结果表明,QBO与其相关的次级环流所引起动力输送的变化,使平流层微量气体分布发生变化。  相似文献   

8.
本文利用线性化的能量方程和交叉谱方法分别研究了准两周振荡和准40天振荡的能量来源及其转换过程。发现:在热带对流层中,对于低频振荡过程来说,来自中高纬度的侧向强迫作用和水汽凝结的加热作用是非常重要的,为扰动的产生和维持提供了重要能源。而正、斜压不稳定作用对扰动发展的作用是极小的。并且指出,在东亚热带对流层上部,准两周振荡通过与平均气流的相互作用为基本气流提供许多能量,对于维持这里的高空东风急流有重要作用。准40天振荡向平流层输送能量,对平流层平均环流的演变可能有重要贡献。  相似文献   

9.
陈文  黄荣辉 《大气科学进展》2002,19(6):1113-1126
利用变换欧拉平均方程讨论了行星波动力学,观测和模拟结果都表明,在北半球冬季准定常行星波的经向传播存在两支波导。一支为高纬度波导,另一支则为低纬度波导。这些结果与理论分析相当一致。通过对EP通量进一步的研究表明,平流层爆发性增温是沿高纬度波导传播的异常行星波与平均气流相互作用的结果。而热带风场的准两年周期振荡(QBO)是低纬度平流层下层大气纬向平均流的一个重要年际变化,它可以影响行星波沿低纬度波导的传播;此外,由一个行星波-平均流耦合模式模拟的结果表明,这个热带风场的变化还可以通过波流相互作用调制行星波沿高纬度波导的传播。行星波对臭氧的输运作用在中也进行了分析,行星波强迫出的剩余平均环流表明,耗散的行星波有强的输运作用;向北的涡动热量输送可以强迫出一个正的输运环流,其在低纬度上升并在高纬度下沉。同时研究还表明,热带风场的QBO对行星波传播的调制对输运环流也有重要影响,模式结果表明,在QBO的东风位相期间行星波引起的输运作用明显增强,其结果可用于解释平流层高纬度臭氧的年际变化。  相似文献   

10.
平流层准两年振荡(QBO)是赤道平流层(~100-1 hPa)变率的主要模态,可对中高纬地区的环流产生重要影响,但目前利用通用大气环流模式(GCM)对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式(IAP-AGCM)的中高层大气模式版本(IAP-AGCML69)对QBO进行模拟,并对其动量收支情况进行分析.研究发现,QBO主要是由对流活动引起的重力波强迫(参数化)引起的,但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献,在上平流层,其量值大小与参数化的重力波强迫相当.以上结果提供了对QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

19.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

20.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号