首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The algorithm CN makes use of normalized functions. Therefore the original algorithm, developed for the California-Nevada region, can be directly applied, without adjustment of the parameters, to the determination of the Time of Increased Probability (TIP) of strong earthquakes for Central Italy. The prediction is applied to the events with magnitudeMM 0=5.6, which in Central Italy have a return period of about six years. The routinely available digital earthquake bulletins of the Istituto Nazionale di Geofisica (ING), Rome, permits continuous monitoring. Here we extend to November 1994 the first study made by Keilis-Boroket al. (1990b). On the basis of the combined analysis of seismicity and seismotectonic, we formulate a new regionalization, which reduces the total alarm time and the failures to predict, and narrows the spatial uncertainty of the prediction with respect to the results ofKeilis-Borok et al. (1990b).The premonitory pattern is stable when the key parameters of the CN algorithm and the duration of the learning period are changed, and when different earthquake catalogues are used.The anlysis of the period 1904–1940, for whichM 0=6, allows us to identify self-similar properties between the two periods, in spite of the considerably higher seismicity level of the earlier time interval compared with the recent one.  相似文献   

2.
—Large earthquakes in Italy are preceded by a specific seismic activation which could be diagnosed by a reproducible intermediate-term earthquake prediction method—a modification for lower seismic rate areas of the algorithm, known as M8 (Keilis-Borok and Kossobokov, 1990). Use has been made of the PFG-ING catalog of earthquakes, compiled on a regular basis, to determine areas and times of increased probability for occurrences of M≥ 6 earthquakes. In retroactive simulation of forward prediction, for the period 1972–1995, both the 1976 Friuli, M = 6.1 and the 1980 Irpinia, M = 6.5 earthquakes are predicted. In the experiment where priority magnitude scale is used, the times of increased probability for a strong earthquake to occur (TIPs) occupy less than a quarter of the total magnitude-space-time domain, and are rather stable with respect to positioning of circles of investiga tion. Successful stability tests have been made considering a recently compiled catalog (CCI97) (Peresan et al., 1997). In combination with the CN algorithm results (Costa et al., 1996) the spatio-temporal uncertainty of the prediction could be reduced to 5%. The use of M8 for the forward prediction requires the computations to be repeated each half-year, using the updated catalog.  相似文献   

3.
The CN algorithm is utilized here both for the intermediate term earthquake prediction and to validate the seismotectonic model of the Italian territory. Using the results of the analysis, made through the CN algorithm and taking into account the seismotectonic model, three main areas, one for Northern Italy, one for Central Italy and one for Southern Italy, are defined. Two transition areas between the three main areas are delineated. The earthquakes which occurred in these two areas contribute to the precursor phenomena identified by the CN algorithm in each main area.  相似文献   

4.
The existence of a layer of unstable seismotectonic strain, which spatially coincides with the waveguide previously detected here at depths of 12–20 km, is established in the central part of the Tajik Depression [Lukk et al., 1970; Nersesov and Chepkunas, 1970; 1971]. This crustal layer is assumed to be weakened and saturated by fluid. The latter is supposedly achieved due to the supply of the liquid component from the bottom crust or upper mantle in the cracks and pores of the waveguide material. A near vertical pillar-like seismogenic body revealed in the work [Shevchenko et al., 2011], which penetrates the waveguide in the depth interval 0–40 km, is considered as one of the possible channels of such inflow. The detected loosened layer (the waveguide) is characterized by a signficant reduction in seismic activity. However, no such reduction is observed within the pillar-like seismogenic body at these depths. Moreover, compared to the nearest ambient environment, the upper 10–15 km of this body feature considerably increased seismic activity that manifested itself in a series of 13 strong earthquakes (with M ≥ 4.7) that occurred within the past approximately 100 years.  相似文献   

5.
One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude μ is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude mmax for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude μ is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of μ for the time interval Tf in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence α?=?0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times Tf to the next earthquake with a given magnitude equal to 6.5, 7.0, and 7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude mmax?=?8.5 and calculate the upper bound of the confidence interval of μ in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1???α?=?0.95 and 0.90, the probability distribution of μ is around μ?=?7.16???8.23 in all seismic zones.  相似文献   

6.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

7.
The present study aims at understanding the seismotectonic province of the Shillong Plateau (SP) by identifying the potential seismic source zones within a radius of 500 km from the centre of the SP. From existing literature and earthquake (EQ) data, the seismotectonic region is found to vary in terms of seismicity, tectonic features, geology, thickness of overburden, rupture characteristics and rate of movement. Thus, entire 500-km-radius seismotectonic region is divided into four seismic source zones: namely (1) the Shillong Plateau–Assam Valley Zone (SP-AVZ), (2) the Indo-Burma Ranges Zone (IBRZ), (3) the Bengal Basin Zone (BBZ) and (4) the Eastern Himalaya Zone (EHZ). EQ catalogues for each source zone is analysed for completeness of magnitude and time. Seismic parameter b estimated using a maximum likelihood method is found to be 0.91 ± 0.03, 0.94 ± 0.02, 0.80 ± 0.03 and 0.89 ± 0.03 for the SP-AVZ, IBRZ, BBZ and EHZ, respectively. In addition, the maximum likelihood method is used to estimate the mean annual activity rate, maximum possible magnitude (m max), return period and probability of exceedance for the four zones. The b values estimated suggest that the BBZ is seismically more active; however, the rate of occurrence of EQs is highest in the IBRZ. Findings from this study are an indication of the relative contribution from each of the four seismic source zones towards a seismic hazard of the SP.  相似文献   

8.
Recently the equilibrium property of ergodicity was identified in an earthquake fault system (Tiampo et al., Phys. Rev. Lett. 91, 238501, 2003; Phys. Rev. E 75, 066107, 2007). Ergodicity in this context not only requires that the system is stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages when studying their behavior in space and time. In this work we show that this property can be used to identify those regions of parameter space which are stationary when applied to the seismicity of two naturally-occurring earthquake fault networks. We apply this measure to one particular seismicity-based forecasting tool, the Pattern Informatics index (Tiampo et al., Europhys. Lett. 60, 481–487, 2002; Rundle et al., Proc. National Acad. Sci., U.S.A., Suppl. 1, 99, 2463, 2002), in order to test the hypothesis that the identification of ergodic regions can be used to improve and optimize forecasts that rely on historic seismicity catalogs. We also apply the same measure to synthetic catalogs in order to better understand the physical process that affects this accuracy. We show that, in particular, ergodic regions defined by magnitude and time period provide more reliable forecasts of future events in both natural and synthetic catalogs, and that these improvements can be directly related to specific features or properties of the catalogs that impact the behavior of their spatial and temporal statistics.  相似文献   

9.
The study is focusing on the stress and strain inversions from focal mechanisms in a revised seismotectonic zonation of northeastern Italy and western Slovenia. The recent increase of monitoring capability of the local seismic network, the updated geological-structural model of the area, and the novelties emerged from studies on the spatial organization of the seismicity allowed a redefinition of the seismotectonic zones. The stress and strain tensors inversion is inferred from 203 focal mechanisms, corresponding to earthquakes occurred between 1984 and 2016 with coda-duration magnitude range from 2.0 to 5.6. The inverted stress domains reveal an articulated picture of the interaction of the Adria microplate with the Eurasian plate. A dominant strike-slip stress field characterizes the eastern part of the area, while the seismotectonic zones of the central part are undergoing to thrusting regime. The stress pattern inferred in the western part of the study area outlines a complex picture with prevailing strike-slip regime and dominant compression only in a seismotectonic zone. The comparison of stress and strain tensor orientations evidences a relative uniformity of the crustal strength in the eastern and northwestern zones of the study area. The central and western zones appear to be characterized by planes of mechanical weakness not favorably oriented for failure with respect to the stress tensor.  相似文献   

10.
A rational choice of the scalar seismic moment and ordering index is proposed that can be advantageously used for the monitoring of source zones of strong earthquakes in order to predict the development of a seismic situation. These parameters are the main characteristics of seismotectonic deformation. The ordering index characterizes a regular change in time of chaotization and ordering phases of the seismic process related to the occurrence of strong aftershocks. Using the December 5, 1997, Kronotskii (M w = 7.8) and December 26, 2004, Sumatra (M w = 9.0) earthquakes as an example, temporal variations of the studies parameters in the aftershock zones of these earthquakes are analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号