首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interface values on the interface of sub-domains or the values adjacent to the interface points, so that the unconditional stable parallel schemes with the second accuracy are formed. Without assuming heuristically that the original boundary value problem has the unique smooth vector solution, the existence and uniqueness of the discrete vector solutions of the parallel difference schemes constructed are proved. Moreover the unconditional stability of the parallel difference schemes is justified in the sense of the continuous dependence of the discrete vector solution of the schemes on the discrete known data of the original problems in the discrete W2(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the parallel difference schemes with interface extrapolation terms to the unique generalized solution of the original quasi-linear parabolic problem is proved. Numerical results are presented to show the good performance of the parallel schemes, including the unconditional stability, the second accuracy and the high parallelism.  相似文献   

2.
In this paper we are going to discuss the difference schemes with intrinsic parallelism for the boundary value problem of the two dimesional semilinear parabolic systems.The unconditional stability of the general finite difference schemes with intrinsic parallelism is justified in the sense of the continuous dependence of the discrete vector solution of the difference schemes on the discrete data of the original problems in the discrete W2^(2,1) norms.Then the uniqueness of the discrete vector solution of this difference scheme follows as the consequence of the stability.  相似文献   

3.
The general finite difference schemes with intrinsic parallelism for the boundary value problem of the semilinear parabolic system of divergence type with bounded measurable coefficients is studied. By the approach of the discrete functional analysis, the existence and uniqueness of the discrete vector solutions of the nonlinear difference system with intrinsic parallelism are proved. Moreover the unconditional stability of the general difference schemes with intrinsic parallelism justified in the sense of the continuous dependence of the discrete vector solution of the difference schemes on the discrete initial data of the original problems in the discrete W_2~(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the certain difference schemes with intrinsic parallelism to the unique generalized solution of the original semilinear parabolic problem is proved.  相似文献   

4.
李荣华  张威威 《东北数学》2004,20(4):441-456
In this paper we study a kind of mixed anti-diffusion method for partial differntial equations. Firstly, we use the method to construct some difference schemes for the conservation laws. The schemes are of second order accuracy and are total variation decreasing (TVD). In particular, there are only three knots involved in the schemes. Secondly, we extend the method to construct a few high accuracy difference schemes for elliptic and parabolic equations. Numerical experiments are carried out to illustrate the efficiency of the method.  相似文献   

5.
The general difference schemes for the first boundary problem of the fully nonlinear pseudo-hyperbolic systemsf(x, t, u,u_x,u_(xx),u_t,u_(tt),u_(xt),u_(xxt))=0are considered in the rectangular domain Q_T={0≤x≤1, 0≤t≤T}, where u(x,t)and f(x, t, u,p_1, p_2, r_1,r_2,q_1,q_2) are two m-dimensional vector functions with m≥1 for(x, t)∈Q_T and u,p_1,p_2,r_1,r_2,q_1,q_2∈R. The existence and the estimates of solutionsfor the finite difference system are established by the fixed point technique. The absolute andrelative stability and convergence of difference schemes are justified by means of a series of a prioriestimates. In the present study, the existence of unique smooth solution of the original problemis assumed. The similar results for nonlinear and quasilinear pseudo-hyperbolic systems are alsoobtained.  相似文献   

6.
A family of three-layer implicit difference schemes of high accuracy with two parameters for solving high order Schroedinger type equation au/at = i(-1)^m a^2mu/ax^2m are constructed(where i = √-1,m is positive integers). In the special case α =1/2,β = 0,we obtain a two-layer difference scheme. These schemes are proved to be absolutely stable for arbitrarily chosen non-negative parameters, and the order of the truncation error is O((△t)^2 (△x)^4). They are shown by numerical examples to be effective, and practice consistant with theoretical analysis.  相似文献   

7.
A kind of the general finite difference schemes with intrinsic parallelism forthe boundary value problem of the quasilinear parabolic system is studied without assum-ing heuristically that the original boundary value problem has the unique smooth vectorsolution. By the method of a priori estimation of the discrete solutions of the nonlineardifference systems, and the interpolation formulas of the various norms of the discretefunctions and the fixed-point technique in finite dimensional Euclidean space, the exis-tence and uniqueness of the discrete vector solutions of the nonlinear difference systemwith intrinsic parallelism are proved. Moreover the unconditional stability of the generalfinite difference schemes with intrinsic parallelism is justified in the sense of the continu-ous dependence of the discrete vector solution of the difference schemes on the discretedata of the original problems in the discrete w_2~(2,1) norms. Finally the convergence of thediscrete vector solutions of the certain differe  相似文献   

8.
In the present work we are going to solve the boundary value problem for the quasilinear parabolic systems of partial differential equations with two space dimensions by the finite difference method with intrinsic parallelism.Some fundamental behaviors of general finite difference schemes with intrinsic parallelism for the mentioned problems are studied.By the method of a priori estimation of the discrete solutions of the nonlinear difference systems,and the interpolation formulas of the various norms of the discrete functions and the fixed-point technique in finite dimensional Euclidean space,the existennce of the discrete vector solutions of the nonliear difference system with intrinsic parallelism are proved .Moreover the convergence of the discrete vector solutions of these difference schemes to the unique generalizd solution of the original quasilinear parabolic problem is proved.  相似文献   

9.
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decompo-sition of high order difference operators and prior estimates are adopted. Optimal order estimates in L2 norm are derived to determine the error in the approximate solution.  相似文献   

10.
For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L~2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources.  相似文献   

11.
In an unbounded (with respect to x and t) domain (and in domains that can be arbitrarily large), an initial-boundary value problem for singularly perturbed parabolic reaction-diffusion equations with the perturbation parameter ε2 multiplying the higher order derivative is considered. The parameter ε takes arbitrary values in the half-open interval (0, 1]. To solve this problem, difference schemes on grids with an infinite number of nodes (formal difference schemes) are constructed that converge ε-uniformly in the entire unbounded domain. To construct these schemes, the classical grid approximations of the problem on the grids that are refined in the boundary layer are used. Schemes on grids with a finite number of nodes (constructive difference schemes) are also constructed for the problem under examination. These schemes converge for fixed values of ε in the prescribed bounded subdomains that can expand as the number of grid points increases. As ε → 0, the accuracy of the solution provided by such schemes generally deteriorates and the size of the subdomains decreases. Using the condensing grid method, constructive difference schemes that converge ε-uniformly are constructed. In these schemes, the approximation accuracy and the size of the prescribed subdomains (where the schemes are convergent) are independent of ε and the subdomains may expand as the number of nodes in the underlying grids increases.  相似文献   

12.
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L~2-norm.  相似文献   

13.
1 引言 高阶Schrdinger方程在量子力学、非线性光学及流体力学中有着广泛的应用,其最简单的模型方程为,即 (其中,i=(-1)~(1/2),m为正整数) (1) 文[2-3]研究了方程(1)的辛算法及差分解法。文[2]先将方程(1)写成Hamilton形  相似文献   

14.
二维抛物型方程的高精度多重网格解法   总被引:9,自引:0,他引:9  
提出了数值求解二维抛物型方程的一种新的高精度加权平均紧隐格式,利用Fourier分析方法证明了该格式是无条件稳定的,为了克服传统迭代法在求解隐格式是收敛速度慢的缺陷,利用了多重网格加速技术,大大加快了迭代收敛速度,提高了求解效率,数值实验结果验证了方法的精确性和可靠性。  相似文献   

15.
Three different implicit finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the second-order (5,1) Backward Time Centered Space (BTCS) implicit formula, and the second-order (5,5) Crank-Nicolson implicit finite difference formula and the fourth-order (9,9) implicit scheme. These finite difference schemes are unconditionally stable. The (9,9) implicit formula takes a huge amount of CPU time, but its fourth-order accuracy is significant. The results of a numerical experiment are presented, and the accuracy and central processor (CPU) times needed for each of the methods are discussed and compared. The implicit finite difference schemes use more central processor times than the explicit finite difference techniques, but they are stable for every diffusion number.  相似文献   

16.
Previously formulated monotonicity criteria for explicit two-level difference schemes designed for hyperbolic equations (S.K. Godunov’s, A. Harten’s (TVD schemes), characteristic criteria) are extended to multileveled, including implicit, stencils. The characteristic monotonicity criterion is used to develop a universal algorithm for constructing high-order accurate nonlinear monotone schemes (for an arbitrary form of the desired solution) based on their analysis in the space of grid functions. Several new fourth-to-third-order accurate monotone difference schemes on a compact three-level stencil and nonexpanding (three-point) stencils are proposed for an extended system, which ensures their monotonicity for both the desired function and its derivatives. The difference schemes are tested using the characteristic monotonicity criterion and are extended to systems of hyperbolic equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号