首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
确定了广义超特殊p-群G的自同构群的结构.设|G|=p~(2n+m),|■G|=p~m,其中n≥1,m≥2,Aut_fG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是p~m时,(i)如果p是奇素数,那么AutG/AutfG≌Z_((p-1)p~(m-2)),并且AutfG/InnG≌Sp(2n,p)×Zp.(ii)如果p=2,那么AutG=Aut_fG(若m=2)或者AutG/AutfG≌Z_(2~(m-3))×Z_2(若m≥3),并且AutfG/InnG≌Sp(2n,2)×Z_2.(2)当G的幂指数是p~(m+1)时,(i)如果p是奇素数,那么AutG=〈θ〉■Aut_fG,其中θ的阶是(p-1)p~(m-1),且Aut_f G/Inn G≌K■Sp(2n-2,p),其中K是p~(2n-1)阶超特殊p-群.(ii)如果p=2,那么AutG=〈θ_1,θ_2〉■Aut_fG,其中〈θ_1,θ_2〉=〈θ_1〉×〈θ_2〉≌Z_(2~(m-2))×Z_2,并且Aut_fG/Inn G≌K×Sp(2n-2,2),其中K是2~(2n-1)阶初等Abel 2-群.特别地,当n=1时...  相似文献   

2.
确定了一类中心循环的有限p-群G的自同构群.设G=X_3(p~m)~(*n)*Z_(p~(m+r)),其中m≥1,n≥1和r≥0,并且X_3(p~m)=x,y|x~(p~m)=y~(p~m)=1,[x,y]~(p~m)=1,[x,[x,y]]=[y,[x,y]]=1.Aut_nG表示Aut G中平凡地作用在N上的元素形成的正规子群,其中G'≤N≤ζG,|N|=p~(m+s),0≤s≤r,则(i)如果p是一个奇素数,那么AutG/Aut_nG≌Z_(p~((m+s-1)(p-1))),Aut_nG/InnG≌Sp(2n,Z_(p~m))×Z_(p~(r-s)).(ii)如果p=2,那么AutG/Aut_nG≌H,其中H=1(当m+s=1时)或者Z_(2~(m+s-2))×Z_2(当m+s≥2时).进一步地,Aut_nG/InnG≌K×L,其中K=Sp(2n,Z_(2~m))(当r0时)或者O(2n,Z_(2~m))(当r=0时),L=Z_(2~(r-1))×Z_2(当m=1,s=0,r≥1时)或者Z_(2~(r-s)).  相似文献   

3.
确定了广义超特殊P-群G的自同构群的结构.设|G|=p2n+m,|ζG|=pm,其中n≥1,m≥2,AutfG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是pm时,(i)如果p是奇素数,那么Aut G/AutfG≌Z(p_1)pm-2,并且AutfG/Inn G≌Sp(2n,p)×zp.(ii)如果p=2,那么AutG=AutfG(若m=2)或者AutG/AutfG≌Z2m-3×z2(若m≥3),并且AutfG/InnG≌Sp(2n,2)× z2.(2)当G的幂指数是pm+1时,(i)如果p是奇素数,那么AutG=<θ>×AutfG,其中p的阶是(p-1)pm-1,且AutfG/InnG≌K(×)Sp(2n-2,p),其中K是p2n-1阶超特殊p-群.(ii)如果p=2,那么Aut G=<θ1,θ2>(×) AutfG,其中<θ1,θ2>=<θ1>×<θ2>≌Z2m-2×Z2,并且AutfG/InnG≌K(×)Sp(2n-2,2),其中K是22n-1阶初等Abel 2-群.特别地,当n=1时,AutfG/InnG≌Zp.  相似文献   

4.
用如下的方式确定了广义超特殊p-群G的自同构群.设|G|=p2n+m,|ζG|=pm,|N|=pl并且G'≤N≤ζG,其中n≥1且m≥2.AutnG表示AutG中平凡地作用在N上的所有自同构形成的正规子群.则(1)当p是奇素数时,AutG/AunG≌Z(p-1)pl-1.进一步地,(i)如果G的幂指数是pm,则Autn...  相似文献   

5.
王玉雷  刘合国 《中国科学A辑》2009,39(10):1187-1210
确定了广义超特殊p-群G的自同构群的结构.假设|G|=p^2n+m,|ζG|=p^m,其中n≥1,m≥2,(1)当p是奇数时,记AutG'G={α∈AutG|α在G上作用平凡},则(i)AutG'G Aut G,Aut G/AutG'G=~Zp-1;(ii)如果G的幂指数是p^m,那么AutG'G/InnG=~Sp(2n,p)×Zp^m-1;(iii)如果G的幂指数是p^m+1,那么AutG'G/InnG=~(K×Sp(2n-2,p))×Zp^m-1,其中K是p^2n-1阶超特殊p-群.特别地,当n=1时,AutG'G/Inn G=~Zp×Zp^m-1.(2)当p=2时,(i)如果G的幂指数是2^m,那么Out G=~Sp(2n,2)×Z2×Z2^m-2.特别地,当n=1时,|Aut G|=3·2^m+2,Aut G的Sylow子群都不是正规子群,并且Aut G的Sylow 2-子群都同构于HK,其中H=Z2×Z2×Z2×Z2^m-2,K=Z2.(ii)如果G的幂指数是2^m+1,那么OutG=~(ISp(2n2,2))×Z2×Z2^m-2,其中I是一个2^2n-1阶初等Abel 2-群.特别地,当n=1时,|AutG|=2^m+2并且Aut G=~HK,其中H=Z2×Z2×Z2^m-1,K=Z2.  相似文献   

6.
确定了超特殊Z-群的自同构群.设G是超特殊Z-群,即G={(1 α_1 α_2···α_n α_(n+1) 0 1 0···0 α_(n+2) ···0 0 0 ··· 0 α_2n 0 0 0··· 1 α_(2n+1) 0 0 0···1 α_(2n+1) 0 0 0···0 1)|α_j∈Z,j=1,2,3,...,2n+1}Aut_cG是AutG中平凡作用在ζG上的自同构形成的正规子群,则AutG=Aut_cG×Z_2,且1→Z···Z}2N→Aut_cG→Sp(2n,Z)→1是正合列.  相似文献   

7.
设G是换位子群为p阶群的有限p-群,确定了AutG的结构,证明了(i)AutG/AutGG≌Zp-1,其中AutGG={α∈AutG|α平凡地作用在G上}.(ii)AutGG/Op(AutG)≌iGL(ni,p)×jSp(2mj,p),其中Op(AutG)是AutG的最大正规p-子群,ni和mj由G惟一确定.  相似文献   

8.
In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 .  相似文献   

9.
Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G'→G→Z_(p~k)×…×Z_(p~k),where G'≌Z_(p~k),and ζG/G' is a,direct factor of G/G'.Then G is a central product of an extraspecial p~kgroup E and ζG.Let |E|=p~((2n+1)k) and |ζG|=p~((m+1)k).Suppose that the exponents of E and ζG are p~(k+l) and p~(k+r),respectively,where 0≤l,r≤k.Let Aut_(G') G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G',let Aut_(G/ζG,ζG) G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζG and let Aut_(G/ζG,ζG/G') G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on ζG/G'.Then(ⅰ) The group extension 1→Aut G'→Aut G→Aut G'→1 is split.(ⅱ) Aut_(G') G/Aut_(G/ζG,ζG) G≌G_1 × G_2,where Sp(2n-2,Z_(p~k))■H≤G_1≤Sp(2n,Z_(p~k)),H is an extraspecial p~k-group of order p~((2n-1)k) and(GL(m-1,Z_(p~k))■Z_(p~k)~((m-1))■Z_(p~k)~((m))≤G_2≤GL(m,Z_(p~k))■Z_(p~k)~((m)).In particular,G_1=Sp(2n-2,Z~(p~k))■ H if and only if l=k and r=0;G_1=Sp(2n,Z_(p~x)) if and only if l≤r;G_2=(GL(m-1,Z_(p~k))■ Z_(p~k)~((m-1))■ Z_(p~k)~((m)) if and only if r=k;G_2=GL(m,Z_(p~k))■Z_(p~k)((m)) if and only if r=0.(ⅲ) Aut_(G') G/Aut_( G/ζG,ζG/G') G≌G_1 × G_3,where G_1 is defined in(ⅱ);GL(ml,Z_(p~k))■ Z_(p~k)~((m-1))≤G_3 ≤GL(n,Z_(p~k)).In particular,G_3=GL(m-1,Z_(p~k))■ Z_(p~k)~((m-1)) if and only if r=k;G_3=GL(m,Z_(p~k)) if and only if r=0.(ⅳ) Ant_(G/ζG,ζG/G') G≌ Aut_(G/ζG,ζG/G') G■ Z_(p~k)~((m)),If m=0,then Ant_(G/ζG,ζG/G') G=Inn G≌Z_(p~k)~((2n));If m 0,then Ant_(G/ζG,ζG/G') G≌Z_(p~k)~((2nm))×Z_(p~(k-r))~((2n)),and Aut_(G/ζG,ζG) G/Inn G≌Z_(p~k)~((2n(m-1))× Z_(p~(k-r))~((2n)).  相似文献   

10.
设G=KP,其中K是有限生成的p′-自由的幂零群,P是有限秩的幂零p-群,并且[K,P]=1,即G是K和P的中心积,α和β是G的两个p-自同构,记I:=〈(αβ(g))·(βα(g))~(-1)|g∈G〉,则(i)当I=Z_(p~n)(?)Z_(p~∞)时,α和β生成一个可解的剩余有限p-群,它是有限生成的无挠幂零群被有限p-群的扩张;在下列3种情形下,α和β生成一个可解的剩余有限p-群,其幂零长度不超过3.(ii)当I=Z(?)Z_(p~∞)时;(iii)当I有正规列1相似文献   

11.
In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G1×D8×Z2,where G1=(a,b,c|a4=b2=c2=1,ab=a-1,[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.  相似文献   

12.
刘合国  张继平  徐涛 《数学学报》2018,61(6):881-910
设G是有限秩的幂零群,1=ζ_0Gζ_1G …ζ_cG=G是G的上中心列,End(ζ_iG/ζ_(i-1)G)是Abel群ζ_iG/ζ_(i-1)G的自同态环(1≤i≤c),End(ζ_iG/ζ_(i-1)G)可以自然地作成一个Lie环.α_1,α_2,…,α_n是G的n个自同构,把它们在ζ_iG/ζ_(i-1)G上的诱导自同构分别记为α_(1i),α_(2i),…,α_(ni)(1≤i≤c).如果由α_(1i),α_(2i),…,α_(ni)生成的Lie环End(ζ_iG/ζ_(i-1)G)的Lie子环都是完全可解的,那么α_1,α_2,…,α_n生成的AutG的子群具有良好的幂零性质.考虑G的下中心列,可以得到对偶的结果.  相似文献   

13.
In this paper we obtain the fundamental solution for a class of weighted BaouendiGrushin type operator Lp,γ,αu = ▽γ·(|▽γu|p-2ραγu) on Rm+n with singularity at the origin,where ▽γ is the gradient operator defined by ▽γ =(▽x,|x|γy) and ρ is the distance function.As an application,we get some Hardy type inequalities associated with ▽γ.  相似文献   

14.
桂兴国  张静 《应用数学》2012,25(3):596-602
本文主要讨论三维Boussinesq方程当扩散系数κ=0时光滑解的爆破准则.利用Littlewood-Paley分解和能量方法证明了如果方程关于水平速度场ū=(u1,u2,0)的水平导数满足▽hū=(1ū,1ū,0)∈L1(0,T;B0∞,∞(R3)).则解(u,θ)可以连续到T1>T.  相似文献   

15.
关于Neyman-Pearson基本引理的几个注记   总被引:2,自引:0,他引:2  
本文探讨了Neyman-Pearson基本引理.通过论证总体参数θ只有θ0或θ1两种可能时最优检验功效函数的唯一性,得到了两种假设T1:θ=θ0←→θ=θ1和T2:θ=θ1←→θ=θ0各自对应最优检验的两类错误概率可以互换的结论.  相似文献   

16.
朱玉扬 《数学学报》2011,(4):669-676
本文研究如下一种场站设置问题:设S是欧空间E~m中由有限个点A_1,A_2,…,A_n组成的集合.d(A_i,A_j)表示点A_i和A_j之间的距离.令σ(S)=Σ_(1≤i相似文献   

17.
Let G be an extension of ℚ by a direct sum of r copies of ℚ. (1) If G is abelian, then G is a direct sum of r + 1 copies of ℚ and AutG ≅ GL(r + 1, Q); (2) If G is non-abelian, then G is a direct product of an extraspecial ℚ-group E and m copies of ℚ, where E/ζE is a linear space over Q with dimension 2n and m + 2n = r. Furthermore, let AutG′G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G′ of G, and AutG/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension 1 → AutG′G → AutG → AutG′ → 1 is split; (ii) AutG′G/AutG/ζG,ζGG ≅ Sp(2n,Q) × (GL(m, Q) ⋉ ℚ(m)); (iii) AutG/ζG,ζGG/InnG ≅ ℚ(2nm).  相似文献   

18.
王洁 《数学季刊》2012,(2):238-245
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D(α0) + u(x) = f(x, u(x)), 0 < x < 1, 3 < α≤ 4 u(0) = α0 , u’’ (0) = α2 u(1) = β0 , u’’(1) = β2} (1) where D(0α)+u is Caputo fractional derivative and α0202 is not zero at all,and f:[0,1]×R→ R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号