首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
主要研究了交联剂用量及硫化时间对丁腈橡胶在23℃和120℃下的拉伸强度和拉断伸长率的影响。结果表明,随着交联剂用量或交联时间的减少,丁腈橡胶拉断伸长率在室温和高温下均增大,高温拉断伸长率保持率呈增大趋势;高温拉伸强度呈减小趋势,其保持率没有明显规律。加入甲基丙烯酸镁后,室温拉伸性能、高温拉伸性能和高温拉伸性能保持率均呈增大趋势。  相似文献   

2.
单体坤  江瑞  杜朋朋 《橡胶工业》2020,67(3):0170-0176
将改进Hummer法合成的氧化石墨烯(GO)分散到聚酰亚胺(PI)基体中,运用真空抽滤装置制备用于海水淡化的GO/PI复合薄膜,对复合薄膜的性能进行研究。结果表明:适量的GO(质量分数为0. 010)能够明显改善薄膜的表面形貌,消除或减少薄膜表面孔洞和裂纹;与PI薄膜相比,GO/PI复合薄膜的亲水性能和拉伸性能提高;加入适量的GO(质量分数为0. 010)后,复合薄膜具有较好的脱盐性能,且随着温度升高,脱盐性能提高,当温度达到75℃时,其具有较大的离子去除率(99. 4%)和水渗透量(36. 1 kg·m~(-2)·h~(-1));经多次试验后,复合薄膜的脱盐性能仍能保持较高水平,稳定性较好。GO/PI复合薄膜有望成为一种用于海水淡化的新型反渗透薄膜。  相似文献   

3.
以均苯四甲酸二酐、4,4'-二氨基二苯醚、3,3'-二氨基二苯醚为原料,以N,N-二甲基乙酰胺为溶剂,制得聚酰胺酸(PAA)纺丝液,采取干法纺丝制得PAA初生纤维,将PAA初生纤维经过300~380℃的热处理后,得到聚酰亚胺(PI)初生纤维,在400℃下对PI初生纤维进行热拉伸,最终得到PI纤维,研究了热处理温度、热拉伸倍数等对PI纤维的结构与性能的影响,比较了PI纤维与P84纤维和芳纶1313的性能。结果表明:在300~380℃的热处理温度下,随着温度升高,PI纤维的力学性能降低,最佳热处理温度为300℃时制得的PI初生纤维于400℃下进行热拉伸3.0倍,所得PI纤维的断裂强度为5.8 c N/dtex,初始模量为69.4c N/dtex,其力学性能优于P84纤维及芳纶1313;PI纤维在空气中失重5%和10%的温度分别为560,570℃,其起始分解温度高于P84纤维和芳纶1313,热性能更好;PI纤维经高温热拉伸,纤维内部分子链沿纤维轴向高度取向,表现出典型的取向诱导结晶效应。  相似文献   

4.
借助原子力显微镜、广角X射线衍射仪、扫描电子显微镜、偏光显微镜、动态热机械分析仪、力学性能测试等手段对聚酰亚胺(PI)/滑石粉复合薄膜进行分析与表征.研究结果表明,滑石粉起到成核剂作用,诱导PI结晶.在酰亚胺化过程中,温度升高,结晶越来越明显.随着滑石粉质量分数从0%增加到5%,复合薄膜结晶度增加,拉伸弹性模量、拉伸强度、断裂伸长率增大,热膨胀系数明显下降.当滑石粉质量分数低于5%时,复合薄膜吸水率降低.当滑石粉质量分数为3%时,复合薄膜的综合性能最佳.  相似文献   

5.
研究了不同热处理条件对PVA光学薄膜溶胀度的影响,并进一步探究了溶胀度对薄膜拉伸性能的影响,结果表明:不同热处理条件对薄膜溶胀度有很大影响.PVA光学膜在水中拉伸时,溶胀度越大,薄膜韧性越好,拉伸倍率越高,但当溶胀度过大,易出现褶皱,拉伸后易出现条纹,溶胀度为279.9%的PVA光学薄膜的拉伸性能最佳.  相似文献   

6.
研究了不同拉伸工艺下双向拉伸尼龙6 (PA6)薄膜的晶体结构及其力学、阻隔性能。结果表明,随着拉伸比的增大,双向拉伸PA6薄膜中β晶型向α晶型的转变程度增大,未发生明显的晶体取向,薄膜均衡性较好,其氧气阻隔性能与拉伸强度提高、断裂伸长率降低。随着拉伸温度的提高,双向拉伸PA6薄膜中α晶型(002)晶面的含量增加,拉伸诱导形成的α晶体越完整,薄膜均衡性与氧气阻隔性能提高,其拉伸强度先升高后降低、断裂伸长率降低。随着拉伸速率的增大,双向拉伸PA6薄膜中α晶体完整性降低,薄膜的均衡性与氧气阻隔性能降低,其拉伸强度增大、断裂伸长率降低。  相似文献   

7.
采用溶液缩聚合法制备了聚酰亚胺(PI)薄膜,讨论了反应时间、反应温度、固体质量分数等对PI性能的影响。以共聚合的方式在溶液中进行缩聚合得到聚酰胺酸(PAA),PAA经过高温酰亚胺化得到PI薄膜。结果表明:反应时间、反应温度、固体质量分数的改变对PI的结构和性能均有明显的影响;在低温,反应时间为48 h,固体质量分数为20%时,合成的PI性能更优;PI薄膜在20℃及固体质量分数为10%时的结晶性能更好,热膨胀系数最低,为15.26μm/℃。  相似文献   

8.
以4,4'-二氨基二苯醚(ODA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)为单体,以苯基异氰酸酯改性氧化石墨烯(pGO)为填料,通过原位聚合法成功制备了改性氧化石墨烯/聚酰亚胺复合薄膜。采用红外光谱对其结构进行了表征,并研究其拉伸性能和热稳定性能。结果表明,当填料含量为1%时复合薄膜的拉伸性能最佳,拉伸强度(T_S)达到69.1MPa,拉伸模量(T_M)达到2.31GPa,相对于纯PI薄膜其拉伸强度提高9.3%,拉伸模量提高19.1%;此时复合薄膜的残炭率(Y_c)为60.1%,比纯PI薄膜提高2.7%,最大分解速率时的温度(T_(max))为587℃,比纯PI薄膜提高约8℃,玻璃化转变温度(T_g)为361℃,说明该复合薄膜的拉伸性能和热稳定性能得到一定程度的提高。  相似文献   

9.
为探讨嵌缝材料老化机理及评价指标,选择几种低模量聚氨酯嵌缝材料,研究了嵌缝材料的耐热、耐碱、耐水和耐紫外线老化性能。结果表明,热老化后的材料拉伸强度和拉伸粘结强度明显增大,最高分别增加了156%和117%;材料的耐碱性能较好,碱处理后拉伸性能基本保持不变,但是浸水后粘结性能下降,拉伸粘结强度最高下降了47%;紫外线照射加速了嵌缝材料的老化,表现为材料起皮、龟裂和开裂。提出了增加热老化后拉伸强度上限值和紫外老化后外观来评价嵌缝材料老化性能的建议。  相似文献   

10.
艾罡 《陶瓷》2020,(1):23-29
笔者以均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)为单体,以N,N’-二甲基二苯醚(DMAc)为溶剂,制备聚酰胺酸溶液。在此过程中,采用原位聚合法在酰胺酸溶液中加入氧化铝(Al2O3),通过热亚胺化处理制备得到氧化铝/聚酰亚胺(Al2O3/PI)杂化薄膜。用傅立叶变换衰减透射射红外光谱(ATR/FTIR)、静态热机械分析(TMA)、力学性能测试等手段对PI/Al2O3杂化薄膜结构和性能进行表征。红外分析表明,杂化薄膜热亚胺化完全,杂化反应充分进行,并且Al2O3和PI基体之间形成键接;TMA分析表明,PI/Al2O3杂化薄膜的热膨胀系数随氧化铝含量的增加而减小;常温拉伸性能测试表明,随着Al2O3量的增加,PI杂化薄膜弹性模量逐渐增大,而拉伸强度和断裂伸长率呈下降趋势;玻璃化转变温度测试表明,杂化Al2O3之后的玻璃化温度不是很明显;热重分析表明,引入一定量的Al2O3,薄膜的热分解温度降低。而含有10%氧化铝的杂化薄膜各项性能都表现出相对优良的性能。  相似文献   

11.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

12.
A series of new polyimides were prepared from the reaction of 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) with various aromatic diamines. The properties of the a-BPDA polyimides were compared with those of polyimides prepared from the reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with the same aromatic diamines. Films of the a-BPDA polyimides had higher glass transition temperatures (Tgs) and less color than the corresponding s-BPDA polyimide films. Light transmission at 500 nm, solar absorptivity, and thermal emissivity were determined on certain films. Films of similar polyimides based upon a-BPDA and s-BPDA containing meta linkages and others containing para linkages were each cured at 250, 300, and 350 °C. The films were characterized primarily by Tg, color, optical transparency, tensile properties, dynamic mechanical thermal analysis, and coefficient of thermal expansion. The a-BPDA meta linked polyimide films had tensile strengths and moduli higher than films of the a-BPDA para linked polyimide. The same phenomenon was not observed for the s-BPDA meta and para linked polyimides. The chemistry, mechanical, and physical properties of the polymers and films are discussed.  相似文献   

13.
聚酰亚胺热熔胶粘剂的合成与性能研究   总被引:1,自引:1,他引:0  
王劲  曾晓丹  王剑  顾宜 《中国胶粘剂》2006,15(11):18-21
制备了挠性印制电路中铜箔与聚酰亚胺基材间的聚酰亚胺粘接材料,由醚酐、脂肪族二胺和4,4’-二氨基二苯醚(ODA)或杂环芳香二胺共聚得到的聚酰亚胺薄膜的成膜性很好。通过红外分析,含ODA聚酰亚胺和含杂环聚酰亚胺薄膜已酰亚胺化完全。其力学性能较好。通过DSC分析,含ODA聚酰亚胺的玻璃化转变温度为141℃,结晶熔融温度为212℃;含杂环聚酰亚胺的玻璃化转变温度为136℃,并在225℃出现了一个吸热峰。采用含ODA或杂环聚酰亚胺胶粘剂制备的双面挠性印制电路基板的平均剥离强度为828.66N/m及710.98N/m。  相似文献   

14.
Multiwalled carbon nanotube/rigid‐rod polyimide composite films have been prepared by casting a solution of precursor polymer (polyamide acid) containing multiwalled carbon nanotubes (MWNTs) into thin films, followed by a thermal imidization treatment. The composite films were characterized by FTIR, TEM, DSC, TGA and TMA, and the film tensile properties were also examined. The presence of 1.0% MWNTs in the polymer matrix led to more than twofold increase in tensile strength of the rigid‐rod polyimide composite films and improved thermal stability, but reduced in thermal deformation. However, the tensile property did not show further increase when the film contained higher composition of MWNTs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
2‐(4‐Aminophenyl)‐5‐aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo‐ and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4‐phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3′,4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97–4.38 dL/g (c = 0.5 g/dL, in DMAc, 30°C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307–434°C and the 10% weight loss temperature is in the range of 556–609°C under air. The polyimide films possess strength at break in the range of 185–271 MPa, elongations at break in the range of 6.8–51%, and tensile modulus in the range of 3.5–6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5871–5876, 2006  相似文献   

16.
A 90° peel tester with substrate heating capability was built to evaluate the adhesion strength of polyimide films to a silicon substrate. The effects of polyimide film thickness and peel rate on polyimide adhesion to a silicon substrate under high or low humidity, and at elevated temperatures, have been evaluated. In a high humidity environment, a low peel strength was measured. The influence of moisture on the peel strength increases with decreasing peel rate. Peeling at elevated temperature reduces the moisture effect even under high humidity conditions. Using a low peel rate in a high humidity environment, the measured peel strength showed a maximum as the polyimide film thickness increased. No striations in peeled polyimide films were observed for peeling in a high humidity environment.  相似文献   

17.
An Instron tensile tester has been modified to measure the thermal expansion of polymer films. The method greatly simplifies the experimental procedure necessary for the standard ASTM dilatometric thermal expansion measurement, particularly for thin films. Thermal expansion measurements were made for films of polyester, polycarbonates, vinyls, cellulosies, and polyolefins from room temperature up to 300°F. Second-order transition temperatures were determined by plotting thermal elongation vs temperature; the transition temperature is indicated by a change in slope. Both expansion coeffcients and transition temperatures as determined by this method give excellent agreement with values reported in the literature.  相似文献   

18.
Polyimides containing pyridine as well as triazole were synthesized. The incorporation of pyridine or triazole improves the adhesion between polyimides and sputter-deposited copper. 4,4′-oxydianiline (ODA) was separately mixed with 2,6-diaminopyridine (DAP) and 3,5-diaminol,2,4-triazole (DATA), to form co-diamines. A series of polyimides was obtained in two steps by reacting co-diamines and 3,3′,4,4′-pyromellitic dianhydride (PMDA). The structure of the polyimides was verified by Fourier Transform Infrared spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). Their thermal, mechanical and dielectric properties were investigated. The rigidity of both pyridine and triazole moieties influences the coefficient of thermal expansion, the tensile strength and the elastic modulus of the films. The adhesion strength of the sputter-deposited copper to polyimide films was proportional to the functional group content. At a molar ratio of DAP to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 990 J/m2. At a molar ratio of DATA to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 696 J/m2. The corresponding polyimide films exhibited a good balance in thermal, mechanical and dielectric properties, as did the PMDA-ODA film. The locus of failure (LOF) examination by X-ray photoelectron spectroscopy (XPS) indicated that the LOF of laminates with low to moderate adhesion was mostly at the interface near the polyimide; the LOF of laminates with high adhesion was mostly in the polyimide. The N1s core level spectra of the delaminated copper surface revealed a peak at 398.4 eV in copper/polyimide with DAP/ODA ratio of 1 : 6 and a peak at 398 eV in copper/polyimide with DATA/ODA ratio of 1 : 6, perhaps due to the formation of N-Cu charge-transfer complex. This complex substantially promoted the adhesion between sputter-deposited copper and polyimides.  相似文献   

19.
Aromatic polyimides are high‐performance polymers used in applications demanding service at enhanced temperature while maintaining their structural integrity and excellent combination of chemical, physical and mechanical properties. The incorporation of various metallic additives into a polyimide matrix improves its properties, leading to materials required by specific applications. Hybrid polyimide films containing barium and titanium oxides having thicknesses in the range of tens of micrometres were prepared. These films were obtained using the sol–gel technique starting from a poly(amic acid) and a soluble precursor of metal oxides. They exhibited good thermal stability having an initial decomposition temperature above 460 °C, and a glass transition temperature in the range 217–238 °C. Two subglass transitions, γ and β, were evident from dynamic mechanical analysis and dielectric spectroscopy. A study of the thermal and electrical behaviour of some hybrid polyimide films containing barium and titanium oxides is presented. On increasing the concentration of metal oxides, an increase of dielectric constant and a decrease of thermal stability of the hybrid films were observed. The presence of metal oxides shifted the glass transition temperature and the temperature of the β transition to higher values. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号