首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Fertile transgenicTriticale ( ×Triticosecale Wittmack) plants expressing the-glucuronidase (uidA) and phosphinothricin acetyltransferase (bar) genes were obtained after microprojectile bombardment of scutellar tissue with the plasmid pDB1 containing theuidA gene under the control of the actin-1 promoter (Act1) from rice and the selectable marker genebar under the control of the CaMV 35S promoter. From 465 bombarded scutella about 4000 plantlets were regenerated; 300 plants survived the selection. These regenerants were screened for enzyme activity by the histological GUS assay and by spraying the plants with a herbicide (Basta). Twenty-five regenerants showed GUS activity and survived repeated Basta spraying. Southern blot analysis showed the presence of both marker genes introduced into the genome of analysed plants.All transgenic plants were fertile. They were grown to maturity and set seed. Pollen and progeny analyses provided evidence for inheritance of the introduced genes to the next generation.  相似文献   

2.
Haploid embryo-like structures (ELS) of triticale were obtained by in vitro androgenesis. These structures were bombarded with gold microparticles 1 µm in diameter coated with the plasmid pAHGUS, using the Dupont PDS He/1000 apparatus. Analysis was made of the influence of genotype, duration of ELS pre-culture, helium pressure and shooting distance on the transfer and expression of the gene uidA. No significant differences were seen between genotypes or duration of pre-culture; differences were found, however, with respect to helium pressure and shooting distance. The combination of 1100 psi helium and a 6 cm shooting distance led to the greatest mean number of uidA expression foci in the ELS (1.63), and the greatest mean number of ELS showing at least one focus (0.38). With a pressure of 1800 psi and a 9 cm distance, only 0.35 foci were obtained per ELS, and only 0.18 ELS had one or more foci. These results are being used as references in a program for obtaining double haploid and transgenic triticale plants.  相似文献   

3.

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.  相似文献   

4.
《Endocrine practice》2019,25(3):279-286
Objective: Programmed cell death–ligand 1 (PD-L1) expression on tumor tissue has been associated with favorable response to anti–programmed cell death–receptor 1/PD-L1 therapy in many human cancers. Studies have reported that PD-L1 is also expressed in thyroid cancer. The objective of this paper is to introduce the potential predictive and therapeutic values of PD-L1 in thyroid cancer.Methods: A literature search was conducted in the PubMed database using the terms “PD-L1,” “B7-H1,” and “thyroid cancer.” PD-L1 positivity was determined by immunohistochemical assay.Results: The frequency of PD-L1 positivity in different studies ranged from 6.1 to 82.5% in papillary thyroid cancer (PTC) patients and 22.2 to 81.2% in anaplastic thyroid cancer (ATC) patients. PD-L1 positivity rate was higher in ATC than in PTC within the same studies, and its expression intensity was significantly higher in tumor tissue than in the corresponding nontumor thyroid tissues. Moreover, PD-L1 expression was positively associated with the aggressiveness and recurrence of thyroid cancers and negatively associated with the differentiation status and outcomes. PD-L1 checkpoint pathway blockade may emerge as a promising therapeutic target in the treatment of thyroid cancers.Conclusion: PD-L1 is a potential biomarker to predict the recurrence and prognosis of thyroid cancers. It is also a novel immunotherapy target for optimizing the management landscape of radioiodine-refractory and ATCs.Abbreviations: ATC = anaplastic thyroid cancer; DTC = differentiated thyroid cancer; IHC = immunohistochemical; OS = overall survival; PD-1 = programmed cell death–receptor 1; PD-L1 = programmed cell death–ligand 1; PD-L2 = programmed cell death–ligand 2; PTC = papillary thyroid cancer; TNM = tumor-node-metastasis; Treg = regulatory T cell  相似文献   

5.
Programmed Cell Death in Floral Organs: How and Why do Flowers Die?   总被引:7,自引:0,他引:7  
Rogers HJ 《Annals of botany》2006,97(3):309-315
BACKGROUND: Flowers have a species-specific, limited life span with an irreversible programme of senescence, which is largely independent of environmental factors, unlike leaf senescence, which is much more closely linked with external stimuli. TIMING: Life span of the whole flower is regulated for ecological and energetic reasons, but the death of individual tissues and cells within the flower is co-ordinated at many levels to ensure correct timing. Some floral cells die selectively during organ development, whereas others are retained until the whole organ dies. TRIGGERS: Pollination is an important floral cell death trigger in many species, and its effects are mediated by the plant growth regulator (PGR) ethylene. In some species ethylene is a major regulator of floral senescence, but in others it plays a very minor role and the co-ordinating signals involved remain elusive. Other PGRs such as cytokinin and brassinosteroids are also important but their role is understood only in some specific systems. MECHANISMS: In two floral cell types (the tapetum and the pollen-tube) there is strong evidence for apoptotic-type cell death, similar to that in animal cells. However, in petals there is stronger evidence for an autophagous type of cell death involving endoplasmic reticulum-derived vesicles and the vacuole. Proteases are important, and homologues to animal caspases, key regulators of animal cell death, exist in plants. However, their role is not yet clear. COMPARISON WITH OTHER ORGANS: There are similarities to cell death in other plant organs, and many of the same genes are up-regulated in both leaf and petal senescence; however, there are also important differences for example in the role of PGRs. CONCLUSIONS: Understanding gene regulation may help to understand cell death in floral organs better, but alone it cannot provide all the answers.  相似文献   

6.
Doubled haploid (DH) production is a key technology in plant breeding and research. One emerging method of choice for DH production is microspore culture, which requires reprogramming of the microspores from their normal gametophytic development to a sporophytic development resulting in embryo formation. This commonly requires the application of stress such as cold, heat, or starvation. Here, we report the effect of different stress treatments on embryo formation and the proportion of green plants in triticale microspore culture. We observed different responses to the applied stress treatments among three studied genotypes. In general, a 3-wk cold stress treatment performed best with regard to the two criteria. For one genotype, the application of a 24- or 48-h heat stress gave similar or slightly better results and consequently may be an alternative for genotypes that are recalcitrant to the cold stress treatment.  相似文献   

7.

Induction of androgenesis, followed by chromosome doubling, is a crucial method to obtain complete homozygosity in one-generation route. However, in vitro androgenesis can result in various genetic and epigenetic changes in derived triticale plants. In this study, we evaluated chromosome alternations and we associated them with the changes of spike morphology in androgenic progeny of triticale. We karyotyped offspring plants that derived from double haploid plants using fluorescence in situ hybridization techniques. We distinguished four major groups of karyotypes: double ditelosomics, nullisomics N2R, nullisomics N5R, and triticale plants with a complete set of chromosomes. It is known that more than half of QTLs connected with androgenic response are located in R-genome of triticale but 2R, 5R, and 6R chromosomes are not included. We hypothesized that the reason why only aberrations of chromosomes 2R and 5R appear during androgenesis of triticale is that because these chromosomes are not involved in the stimulation of androgenic response and the following regeneration of plants is not disrupted. Concerning the established groups, we evaluated following quantitative traits: spike length, number of spikes per plant, number of spikelets per spike, and number of grains per spike. The nullisomy of chromosome 2R and 5R resulted in vast changes in spike architecture of triticale plants, which can be correlated with the location of major QTLs for spike morphology traits on these chromosomes. The spikes of nullisomic plants had significantly decreased spike length which correlated with the reduction of number of spikelets per spike and number of grains per spike.

  相似文献   

8.

Key message

The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage.

Abstract

Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.  相似文献   

9.

Background

Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia.

Design and Methods

We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs.

Results

By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0–M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs.

Conclusions

Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.  相似文献   

10.
Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3′-phosphoadenosine 5′-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5′-3′ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.Programmed cell death (PCD) is a universal process in multicellular organisms, contributing to the controlled and active degradation of the cell. In plants, PCD is required for processes as diverse as development, self-incompatibility, and stress response. One well-documented example is the induction of PCD upon pathogen attack, allowing the confinement of the infection, and resistance of the plant. The signaling events leading to the onset of PCD have been extensively studied: pathogen recognition triggers activation of mitogen-activated protein kinase cascades, as well as production of reactive oxygen species (ROS) and salicylic acid (SA), which lead to a hypersensitive response (Coll et al., 2011).From a cellular point of view, several classes of plant PCD have been described and compared with the ones found in animal cells (van Doorn, 2011). PCD is thought to have evolved independently in plants and animals, and genes underlying these mechanisms are therefore poorly conserved between the two kingdoms. However, most cellular features are conserved between plant and animal PCD that are both characterized by cell shrinkage, chromatin condensation, DNA laddering, mitochondria permeabilization, and depolarization (Dickman and Fluhr, 2013). In animal cells, mitochondria play a central role in the regulation of apoptosis (Czabotar et al., 2014; Mariño et al., 2014), and this role is likely shared between the two kingdoms (Lord and Gunawardena, 2012). That said, additional mitochondria-independent PCD pathways have clearly evolved in plants.Genetic approaches have greatly contributed to our understanding of cellular pathways governing PCD in plants. For example, the isolation of lesion mimic mutants (LMMs), in which cell death occurs spontaneously, has allowed the identification of several negative regulators of cell death (for review, see Bruggeman et al., 2015b). Interestingly, lesion formation is light dependent in several of these mutants, which include one of the best characterized LMMs—lesions simulating disease1 (lsd1; Dietrich et al., 1994). The LSD1 protein is required for plant acclimation to excess excitation energy (Mateo et al., 2004): when plants are exposed to excessive amounts of light, the redox status of the plastoquinone pool in the chloroplastic electron transfer chain is thought to influence LSD1-dependent signaling to modulate cell death (Mühlenbock et al., 2008). Additionally, we have previously identified the myoinositol phosphate synthase1 (mips1) mutant as a LMM, in which lesion formation is also light dependent (Meng et al., 2009). This mutant is deficient in the myoinositol (MI) phosphate synthase that catalyzes the first committed step of MI biosynthesis and displays pleiotropic defects such as reduced root growth, abnormal vein development, and spontaneous cell death on leaves, together with severe growth reduction after lesions begin to develop (Meng et al., 2009; Donahue et al., 2010). The light-dependent PCD in the mips1 mutant, as observed for lsd1, suggests that chloroplasts may play a role in the MI-dependent cell death regulation. Accumulating evidence suggests that chloroplasts may play a central role in PCD regulation like mitochondria in animal cells (Wang and Bayles, 2013). First, as described in the case of lsd1, excess light energy received by the chloroplast can function as a trigger for PCD. Furthermore, singlet oxygen (1O2), a ROS, can activate the EXECUTER1 (EX1) and EX2 proteins in the chloroplasts to initiate PCD (Lee et al., 2007). Likewise, ROS generated by chloroplasts play a major role for PCD onset during nonhost interaction between tobacco (Nicotiana tabacum) and Xanthomonas campestris (Zurbriggen et al., 2009). Finally, functional chloroplasts have also been shown to be required for PCD in cell suspensions (Gutierrez et al., 2014) and in a number of LMMs (Mateo et al., 2004; Meng et al., 2009; Bruggeman et al., 2015b). Thus, chloroplasts are now recognized as important components of plant defense response against pathogens (Stael et al., 2015) and are proposed to function with mitochondria in the execution of PCD (Van Aken and Van Breusegem, 2015). However, the exact signaling and metabolic contribution of chloroplasts to PCD remain to be elucidated. Furthermore, cross talk between chloroplasts and mitochondria does occur, such as during photorespiration (Sunil et al., 2013), but whether such communication functions sequentially or in parallel in the control of PCD remains to be determined (Van Aken and Van Breusegem, 2015).To further investigate how chloroplasts contribute to the regulation of cell death, we performed both forward and reverse genetics on the mips1 mutant. An extragenic secondary mutation in divinyl protochlorophyllide 8-vinyl reductase involved in chlorophyll biosynthesis leads to chlorophyll deficiency that abolishes the mips1 cell death phenotype, as do changes in CO2 availability. These findings provide evidence for a link between photosynthetic activity and PCD induction in mips1. Additionally, we investigated the contribution of several retrograde signaling pathways (Chan et al., 2015) to the control of PCD in mips1. This process was independent of GENOMES UNCOUPLED (GUN) and EX signaling pathways, but we found that the SAL1-PAP_XRN retrograde signaling pathway inhibits cell death as well as basal defense reactions in Arabidopsis (Arabidopsis thaliana).  相似文献   

11.
12.
2′,3′-Dideoxycytidine is a powerful in vitro inhibitor of human immunodeficiency virus and is currently used in the treatment of acquired immunodeficiency syndrome. A long-term exposure of U937 monoblastoid cells to dideoxycytidine induces the selection of drug-resistant cells (U937-R). In previous studies, we investigated some important biochemical properties and functional activities, such as basal respiration, protein kinase C activity, superoxide anion release, and the level of reduced glutathione, which were found to be higher in the drug-resistant cell line, compared to the parental one. In the present study, we evaluated the response of the two cell lines to the induction of apoptosis by treatment with staurosporine and okadaic acid, which interfere with the protein kinase and phosphatase pathways, respectively. Moreover, knowing that GSH plays a crucial role in the regulation of nitric oxide-dependent apoptosis, U937-R and parental lines have been treated with SIN-1, which is known to generate significant amounts of O2 and nitric oxide. Resistant and parental cells have been analysed by light and electron microscopy and agarose gel electrophoresis of isolated DNA has been performed. The obtained results demonstrate a different susceptibility of U937-R cell line to apoptosis induced with the three triggers. U937-R cells show more advanced apoptotic features if compared with parental cells, after staurosporine treatment. Differently, the okadaic acid does not induce a different behaviour in the two models. On the contrary, the agent SIN-1 determines an increased number of apoptotic cells in the U937 line. The results suggest that a higher level of protein kinase C and glutathione could prevent programmed cell death in U937-R.  相似文献   

13.
This systematic review and meta-analysis evaluated anti–programmed cell death (PD)-1 immunotherapy (nivolumab or pembrolizumab) for overall efficacy, safety, and effective dose relative to standard chemotherapy or other conventional drugs in the treatment of malignant tumors. We searched the following databases, PubMed, Medline, Embase, Cochrane, Wangfang Data, Weipu, and China National Knowledge Infrastructure, and the reference lists of the selected articles for randomized controlled trials (RCTs) of anti–PD-1 therapies in humans. The outcome measures were overall survival, treatment response, and adverse events. Only four randomized controlled trials met our inclusion criteria. Three of these evaluated responses to nivolumab, whereas one tested pembrolizumab. The result of our analysis suggested that nivolumab may improve the overall response rate in treating melanoma relative to chemotherapy and has few associated adverse events. Similarly, in metastatic melanoma patients, nivolumab had a significant advantage over dacarbazine in terms of 1-year survival, progression-free survival, and objective response rate. Regarding dose levels of nivolumab for patients with metastatic renal cell carcinoma, the outcomes in response to 2 and 10 mg/kg were similar, but both had significant advantages over 0.3 mg/kg. In addition, pembrolizumab showed similar outcomes in response to 2- and 10-mg/kg treatment. Anti–PD-1 immunotherapy appears to be safe and effective for patients with melanoma or metastatic renal cell carcinoma. Our meta-analysis is limited, but additional clinical trials are warranted to verify this preliminary evidence of positive outcomes and before anti–PD-1 therapy can be recommended for routine clinical use.  相似文献   

14.
Although the central nervous system (CNS) has been defined as a privileged site in Alzheimer’s disease (AD), periphery can be more than simply witness of events leading to neurodegeneration. The CNS and peripheral blood can mutually communicate through cells and factors trafficking from the circulation into the brain and vice versa. A number of articles have reviewed inflammatory profiles and programmed cell death (PCD) in AD, separately in the CNS and at the peripheral level. This review does not provide an exhaustive account of what has been published on inflammation and PCD in AD. Rather, the aim of this review is to focus on possible linkages between the central and the peripheral compartments during AD progression, by critically analyzing, in a comparative manner, phenomena occurring in the CNS as well as the peripheral blood. In fact, growing evidence suggests that CNS and peripheral inflammation might present common features in the disease. Microarrays and metabolomics revealed that dysfunction of the glycolytic and oxidative pathways is similar in the brain and in the periphery. Moreover, dysregulated autophagosome/lysosomal molecular machinery, both at the CNS and the peripheral level, in AD-related cell damage, has been observed. Possible implications of these observations have been discussed.  相似文献   

15.
16.
Ranalisma rostratum Stapf is a rare and endangered species. This paper deals with the fertilization and the development of embryo and endosperm in this plant.The embryogenesis is of Caryophyllad type and the development of endosperm belongs to Heobial type.Before fertilization,the two polar nuclei are located respectively at both ends of embryo sac. In most angiosperms with two polar nuclei,the polar nuclei may fuse eiher before fertilization to form a secondary nucleus or during fertilization called triple fusion. In Ranalisma rostratum Stapf, however, it is found that only in case when the micropylar polar nucleus is fertilized,it can move to the chalazal end and fuse with the chalazal polar nucleus.This phenomenon is very rare and the process must take more time to fulfil fertilization both polar nuclei. This feature of fusion of polar nuclei is therefore thought as a primitive character from the view of phylogeny.  相似文献   

17.
18.
The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.  相似文献   

19.
Ceramide synthases (CerS1–CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.  相似文献   

20.
The mode of inheritance of chloroplast and mitochondrial DNA (mtDNA) in rye × triticale intergeneric hybrids has been studied with the use of specific PCR markers for loci 18S/5S and 3rbcL in organelle DNA. In rye × triticale BC1, mtDNA copies of two types, paternal and maternal, have been found; in BC2 plants, only paternal mtDNA and chloroplast DNA (cpDNA) have been detected. Mechanisms determining the inheritance and/or differential amplification of organelles of a specific type are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号