高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究

代立东,李和平,刘丛强,苏根利,崔桐娣. 高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究[J]. 岩石学报, 2005, 21(6): 1737-1742.
引用本文: 代立东,李和平,刘丛强,苏根利,崔桐娣. 高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究[J]. 岩石学报, 2005, 21(6): 1737-1742.
DAI LiDong LI HePing LIU CongQiang SU GenLi CUI TongDi 1.Laboratory of the Earth''''s Interior Materials and Fluid Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China2.Graduate school of Chinese Academy of Sciences,Beijing 100039,China3.Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China4.University of Guizhou,Guiyang 550004,China. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure[J]. Acta Petrologica Sinica, 2005, 21(6): 1737-1742.
Citation: DAI LiDong LI HePing LIU CongQiang SU GenLi CUI TongDi 1.Laboratory of the Earth''''s Interior Materials and Fluid Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China2.Graduate school of Chinese Academy of Sciences,Beijing 100039,China3.Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China4.University of Guizhou,Guiyang 550004,China. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure[J]. Acta Petrologica Sinica, 2005, 21(6): 1737-1742.

高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究

  • 基金项目:

    中国科学院“百人计划”项目、国家自然科学肇金项目(49674221)和中国科学院知识创新重要方向项目(KZCX3-SW-124)资助.致谢 中国钢铁研究院赵顺兴高级工程师完成热等静压热压部分工作,航空航天部185厂提供的电火花放电腐蚀技术帮助完成缓冲剂的制备,以及中国科学院地球化学研究所朱成明研究员捐赠实验样品和在矿物不同晶轴方向的确定与冯俊民研究员进行有益地讨论,匿名审稿人细致认真地阅读本文并提出启发性的修改意见,在此谨表谢意!

  • 在1.0~4.0GPa 和1073~1373K 及控制氧分压条件下,借助于 YJ-3000t 紧装式六面顶固体高压设备和1260阻抗/增益-相位分析仪,就位测定了沿着不同晶轴方向的透辉石的电导率。氧逸度控制是由 Ni+NiO 固体缓冲剂完成的。实验结果表明:(1)在选择的频率范围,无论从复阻抗的模与频率还是从相角与频率关系上,部可以看出复阻抗对频率具有很强的依赖性;(2)随着温度升高,阻抗降低,电导率增大,Logo 与1/T 之间符合 Arrenhius 线性关系式;(3)随着压力升高,[001]方向的透辉石电导率降低,活化焓和指前因子亦随之减小,并首次获得了透辉石中主要载流子的活化能和活化体积分别为1.80±0.04eV 和0.035±0.015cm~3/mol;(4)在2.0GPa 下按照[001]、[100]、[010]的顺序,样品的电导率和指前因子降低,活化焓依次升高,高压下的透辉石电学性质存在各向异性;(5)小极化子导电机制可为透辉石在高温高压下的导电行为提供合理的解释。
  • 加载中
  • [1]

    Cemic L.1996. Impedance spectroscopy and defect chemistry of fayalite.Phys Chem Minerals.,23:186-192

    [2]

    Constable S,Shankland T J and Duba A L.1992. The electrical conductivity an isotropic olivine mantle.J Geophys Res.,97 (B8):3397-3404

    [3]

    Duba A G,Boland G N and Ringwoodite A E.1973. The electrical conductivity of pyroxene.Journal of Geology,81:727 -735

    [4]

    Hirsch L M,Shankland T J and Duba A G.1993. Electrical conduction and polaron mobility in Fe-bearing olivine.Geophys J Int.,114:36-44

    [5]

    Huebner J S,Duba A G and Shock R N.1979. Electrical conductivity of pyroxene,which contains trivalent cations:laboratory measurements and the lunar temperature profile.J Geophys Res.,84:4652-4656

    [6]

    Huebner J S and Dillenaurg G D.1995. Impedance Spectra of Dry Silicate Minerals and Rock:Qualitative Interpretation of Spectra.Am Mineral.,80:46-64

    [7]

    Lastovickova M.1991. A review of laboratory measurements of the electrical conductivity of rocks and minerals.Phys Earth Planet Inter.,66:1 -11

    [8]

    Lemelle L P,Duba A G and Guyot F.1998. The electrical conductivity of olivine under highly reducing conditions.Phys Chem Minerals.,26:164-170

    [9]

    Li L,Raterron O,Weidner D and Chen J H.2003. Olivine flow mechanisms at 8.0GPa.Phys Earth Planet Inter.,138:113 -129

    [10]

    Omura K,Kurita K and Kumazawa M.1989. Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures.Phys Earth Planet Inter.,57:291 -303

    [11]

    Roberts J J and Duba A G.1995. Transient electrical response of San Quintin dunite as a function of oxygen fugacity changes:Information about charge carriers.Geophys Res Lett.,22(4):453 -456

    [12]

    Shock R N.1989. Electrical conduction in olivine.J G eophys Res.,94(B5):5829-5839

    [13]

    Toru I,Tanimoto Y,Irifune T,Suzuki T,Fukui H and Ohtaka O.2004. Thermal expansion of Wadsleyite,Ringwoodite,hydrous Wadsleyite and hydrous Ringwoodite.Phys Earth Planet Inter.,143:279 -290

    [14]

    Varotsos P A and Alexopolos K D.1986. Thermodynamics of Point Defects and Their Relation With Bulk Properties (North-Holland Physics Publishing,Elsevier Science Publishing Company,Inc.)pp:241 -285

    [15]

    Wenk H R,Lonardelli I,Pehl J,Devine J,Prakapenka V,Shen G and Mao H K.2004. In situ observation of texture development in olivine,ringwoodite,magnesiowqstite and silicate perovskite at high pressure.Earth and Planetary Science Letters,226:507-519

    [16]

    Xu J A,Zhang Y M,Hou W,Xu H G,Guo J,Wang Z M,Zhao H R,Wang R J,Huang E and Xie H S.1994. Measurements of ultrasonic wave velocities at high temperature and high pressure for window glass,pyrophylite and kimberlite up to 1400℃ and 5.5GPa.High Temperature High Pressure,26:375-384

    [17]

    Xu Y S,Poe B T,Shankland T J and Rubie D C.1998. Electrical Conductivity of Olivine,Wadsleyite,and Ringwoodite under UpperMantle Conditions.Science,280:1415-1418

    [18]

    Xu Y S and Shankland T J.1999. Electrical conductivity of orthopyroxene and its high-pressure phases.Gcophys Res Lett.,26(17):2645-2648

    [19]

    Xu Y S,Shankhand T J and Duba A G.2000. Pressure effect on electrical conductivity of mantle olivine.Phys Earth Planet Inter.,118:149~161

  • 加载中
计量
  • 文章访问数:  6066
  • PDF下载数:  7539
  • 施引文献:  0
出版历程
收稿日期:  2005-04-05
刊出日期:  2005-11-30

目录