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ABSTRACT

The potential for using the ensemble square root filter data assimilation technique to estimate soil
moisture profiles, surface heat fluxes, and the state of the planetary boundary layer (PBL) is explored. An
observing system simulation experiment is designed to mimic the assimilation of near-surface soil moisture
observations (θo) and in-situ measurements of 2-m temperature (T o), 2-m specific humidity (Qo), and 10-m
horizontal winds [V o=(Uo, V o)]. The background forecasts are generated by a one-dimensional coupled
land surface-boundary layer model (CLS-BLM) with soil, surface-layer and PBL parameterization schemes
similar to those used in the Weather Research and Forecasting (WRF) model. Soil moisture, surface heat
fluxes, and the state of the PBL evolve on different characteristic timescales, so the minimum assimilation
time intervals required for skillful estimates of each target component are different. Correct estimates of
the soil moisture profile are obtained effectively when a 6-h update time interval is used, while skillful
estimates of surface fluxes and the PBL state require more frequent updates. The CLS-BLM requires a
shorter assimilation time interval to correctly estimate the soil moisture profile than previously indicated
by experiments using an off-line land surface model (LSM). Results from assimilating different subsets of
observations show that θo makes a larger contribution to soil moisture estimates, while T o, θo, and V o are
more important for estimates of surface heat fluxes and the PBL state. It is therefore necessary to combine
these variables to accurately estimate the states of both the land surface and the PBL. Experimentation with
different prescribed observational errors shows that the assimilation system is more sensitive to increases in
observational errors than to reductions in observational errors.
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1. Introduction

Modeling land-atmosphere interaction has be-
come an important component of research in earth
system sciences. The land surface and atmospheric
boundary layer compose a tightly coupled system with
complicated interactions that modulate weather and
climate variability (Boussetta et al., 2008; van den
Hurk et al., 2011; Yang and Shen, 2010). Soil moisture
plays an important role in these interactions, largely
controlling the partitioning of surface-atmosphere en-

ergy transfer into fluxes of sensible and latent heat.
Realistic simulations of soil moisture are necessary
for accurate forecasts using numerical weather predic-
tion (NWP) models. An incorrect initialization of soil
moisture may lead to errors in the structure of the
planetary boundary layer (PBL) and possibly the de-
velopment of precipitation, which in turn leads to fur-
ther errors in soil moisture estimates. Soil moisture
initialization not only plays an important role in the
prediction of precipitation but also affects the simula-
tion of land surface processes (Svensson et al., 2011;
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Koster et al., 2009; Li et al., 2007; Liu et al., 2010).
The representation of the PBL is an important

component of any atmospheric model used for stud-
ies of weather and climate, regardless of the scale of
interest. A more accurate initialization of the PBL
structure has been shown to improve short-range fore-
casts of local thermally-driven flows in a mesoscale
model and to positively influence forecasts of cyclo-
genesis, convective outbreaks, and frontal propaga-
tion in a large-scale NWP model (Hacker and Snyder,
2005). The accuracy of the initial PBL structure also
influences three-dimensional background fields derived
from NWP models for use in process studies (such as
studies of air quality and plume dispersion) (Rémy and
Bergot, 2009).

The initialization of NWP models is complicated
by a relative lack of observations of soil moisture and
the state of the PBL. One alternative approach is
to use data assimilation techniques within the model
framework to retrieve soil moisture profiles or the PBL
structure, thus combining direct or indirect observa-
tions with model predictions. For example, remote
sensing radiometric observations of surface tempera-
ture can be used to constrain surface soil moisture
and heat fluxes (Reichle et al., 2010) through assim-
ilating microwave brightness temperature or satellite
retrieval of near-surface soil moisture into an off-line
land surface model (LSM) (Crow and van den Berg,
2010; Walker et al., 2001; Zhang et al., 2005, 2011).
In addition to remote sensing measurements, standard
ground-based meteorological observations may be as-
similated into a single column model (SCM) to esti-
mate the state of the land surface (Hacker and Sny-
der, 2005; Hacker and Rostkier-Edelstein, 2007; Hess,
2001; Mahfouf, 1991). These ground-based observa-
tions are rich, accurate, and often dense. Combina-
tions of different types of observations can also be used
to estimate soil moisture or PBL profiles. For exam-
ple, Seuffert et al. (2003) assimilated both screen-
level parameters (e.g., 2-m temperature and specific
humidity) and satellite observations of 1.4 GHz bright-
ness temperature to predict sensible heat fluxes, root
zones, and near-surface soil moisture. Similarly, Mar-
gulis and Entekhabi (2003) assimilated both radiomet-

ric surface temperature and screen-level meteorologi-
cal variables (temperature and humidity) into a model
of the atmospheric boundary layer and land surface to
estimate surface heat fluxes and the states of the land
surface and PBL.

A number of different data assimilation ap-
proaches have been adopted for use in constraining the
states of the land surface and PBL, from simple direct
insertion to complex flow-dependent ensemble-based
methods. For example, optimal interpolation (OI)
based on statistically derived soil-atmosphere charac-
teristics has been used to correct the soil moisture field
(Mahfouf, 1991), while nudging and incremental up-
date methods have been used to improve the initial
PBL structure in a mesoscale model (Ruggiero et al.,
1996). Other studies have used variational analysis to
retrieve soil moisture as the minimum of a cost func-
tion that expresses the difference between observations
and a specified background state (Seuffert et al., 2003;
Zhang et al., 2007). Variational data assimilation tech-
niques have also been used to retrieve soil moisture
or PBL profiles (Reichle et al., 2001; Margulis and
Entekhabi, 2003). Ensemble Kalman filters (EnKF)
and other ensemble-based data assimilation methods
have also been widely used to constrain soil moisture
and the structure of the PBL (Reichle and McLaugh-
lin, 2002; Hacker and Rostkier-Edelsten, 2007; Tian
et al., 2008; Zhang et al., 2010). These ensemble-
based methods are able to capture the transient cou-
pling and decoupling of the land surface/PBL with the
free atmosphere aloft. Furthermore, they provide flow-
dependent estimates of background error covariance,
including non-stationary and anisotropic correlations
between observations and model background states.
This capability has proved very useful for skillful esti-
mation of the PBL state.

Different data assimilation methods have been
compared to assess their relative skills for estimat-
ing soil moisture. Walker et al. (2001) compared di-
rect insertion with the extended Kalman filter (EKF)
method, finding that the latter is superior to the for-
mer with a quicker retrieval of the soil moisture profile.
Reichle et al. (2002) showed that the EnKF method
provided a slightly better estimate of soil moisture
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than the EKF method. Zhou et al. (2006) compared
the performance of EnKF for estimating soil moisture
with that of a sequential importance resampling par-
ticle filter (which can give exact solutions for large
ensemble sizes). They showed that EnKF provides
a good approximation for non-normal, nonlinear land
surface problems despite its intrinsic assumption of
normality.

The studies mentioned above have focused on es-
timating soil moisture profiles or PBL states sepa-
rately. In this study, we estimate the soil moisture
profile and the PBL state simultaneously by assim-
ilating either near surface soil moisture observations
alone or a suite of observations that includes near
surface soil moisture, 2-m temperature and humidity,
and 10-m horizontal wind. We also evaluate the con-
tributions of each observation to improving the esti-
mated soil moisture profile, surface heat fluxes, and
PBL state. The data assimilation is performed us-
ing an unperturbed-observation ensemble square root
filter (EnSRF) (Whitaker and Hamill, 2002), and
the background forecasts are generated using a one-
dimensional (1D) coupled land surface-boundary layer
model (CLS-BLM). The CLS-BLM contains the same
parameterizations as the Weather Research and Fore-
casting (WRF) model for sub-grid scale processes as-
sociated with the PBL, surface layer and land surface
(Hacker and Rostkier-Edelstein, 2007; Pagowski et al.,
2005). Section 2 briefly introduces the CLS-BLM and
the data assimilation algorithm. Section 3 describes
the experimental setup. Section 4 documents experi-
mental results, including estimated soil moisture pro-
files, surface heat fluxes, PBL profiles, and sensitivity
to observational errors. Section 5 provides a summary
and discussion of the results.

2. Model description and assimilation algori-

thm

2.1 One-dimensional column model

This study uses the 1D column model CLS-BLM.
CLS-BLM has the same physical parameterizations as
the WRF model, and is forced externally by tendencies
derived from WRF forecasts (e.g., horizontal advec-

tion, downward short- and long-wave radiative fluxes
and geostrophic wind). The PBL is simulated using
the Mellor-Yamada-Janjić scheme (Janjić et al., 2001)
and land surface processes are modeled using the Noah
LSM (Chen and Dudhia, 2001).

The Noah LSM, which was initially developed in
1993, is directly related to many hydrologic models.
The model framework is based on a 1D approach to
soil-vegetation-atmosphere interactions that solves the
coupled energy and water budgets at the land sur-
face and within the unsaturated zone. Noah LSM
is a stand-alone model; it can either be run off-line
(driven by atmospheric forcings) or coupled with an
atmospheric model. The model state variables include
soil moisture and soil temperature in 4 layers, skin
temperature (bare soil or vegetation), canopy water
storage, and a variety of storage variables related to
snow processes (Ek et al., 2003). The Noah LSM has
been extensively tested over a wide range of climate
regimes. Recent improvements to the model have been
documented by Niu et al. (2011) and Yang Zong-Liang
et al. (2011).

The column model is adopted because it is easy to
use in ensemble-based data assimilation experiments
while maintaining the complexity of the original WRF
model with respect to the PBL structure and land-
atmosphere interactions. The latter feature is essential
for this study. Detailed descriptions of the CLS-BLM
have been provided by Pagowski et al. (2005) and
Hacker and Rostkier-Edelstein (2007).

2.2 Data assimilation algorithm

The ensemble-based data assimilation method
generally takes one of two forms: the stochastic fil-
ter or the deterministic filter. The latter approach
is designed to avoid sampling errors associated with
the use of “perturbed observations” in the stochas-
tic filter. A variety of deterministic filters have been
proposed, including the ensemble transform Kalman
filter, the ensemble adjustment Kalman filter, and En-
SRF (Whitaker and Hamill, 2002). Here, we use En-
SRF for convenience. Let xb be an m-dimensional
background vector, with x the sum of the ensemble
mean x̄ and x′ the deviation from the ensemble mean
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(i.e., x = x̄ + x′). Let y be a p-dimensional vec-
tor of observations. In this study, y is composed of
observations of soil moisture (θo), 2-m temperature
(T o), 2-m humidity (Qo), and 10-m horizontal wind
(V o). The observation operator H transforms model
states into the observational space. P b is the m × m-
dimensional background error covariance matrix, and
R is the p × p-dimensional observational error covari-
ance matrix. The minimum variance estimate of the
error in the analysis xa is formulated for EnSRF as

x̄a = x̄b + K(ȳ − Hx̄b), (1)

x′a = x′b − K̃Hx′b, (2)

where K is the Kalman gain given by

K = P bHT(HP bHT + R)−1, (3)

and K̃ is expressed as

K̃ = P bHT
[(√

HP bHT + R
)−1]T

·
[√

HP bHT + R +
√

R
]−1

. (4)

The superscript T stands for the matrix transpose. P b

is calculated according to

P b = x′bx′bT =
1

n − 1

i=n∑
i=1

x′bx′bT, (5)

where n is the ensemble size.
HP bHT and R reduce to scalars for an individ-

ual observation. Assuming K̃ = αK (with a constant
α), then a scalar quadratic equation for α can be ob-
tained with the solution

α =
(
1 +

√
R

HP bHT + R

)−1

.

Detailed descriptions of EnSRF have been set forth by
Whitake and Hamill (2002) and Yang Yi et al. (2011).

3. Experimental setup

An observing system simulation experiment
(OSSE) is designed to reduce the interference of model
errors. The true model states are assumed to be ex-
actly known and the observations are generated by
adding known random errors to the true model states.
An OSSE is carried out between 13 and 29 August
2003 at a single point with sparse, flat land cover lo-
cated at 37.6◦N, 96.7◦W. The weather during the test-
ing period was fine, with no large advection processes
or precipitation.

The initial PBL conditions and surface radia-
tion are drawn from the WRF climatology, with the
geostrophic wind forcing set to 3 and –9 m s−1. The
model is configured to run on 60 non-uniform vertical
levels with the lowest model level at 45 m above ground
level. T o, Qo, and V o are accordingly not predicted
by the model; rather, they are calculated according
to Monin-Obukhov similarity. The observation opera-
tor H is not explicitly needed (Reichle et al., 2002a).
Forecasts were initiated at 0300 UTC with a horizon-
tal spacing of 4 km and a time step of 60 s.

Rather than using the 4-layer discretization of the
soil column in the original Noah LSM, we divide the
1-m soil column into 50 layers. The thickness of the
topmost layer is 1 cm, and the thickness of all remain-
ing layers is 2 cm. This approach increases the accu-
racy of the estimates and provides a fair comparison
with previous data assimilation results using an off-
line LSM. Additional details of the data assimilation
environment are listed in Table 1.

We adopt a relatively large ensemble of 80 mem-
bers when comparing the OSSE with model states.
The initial ensemble of PBL state profiles is con-
structed by first randomly selecting two forecasts from
WRF real-time forecasts at a 12-h lead time, then av-

Table 1. Soil parameters and assimilation conditions used in the OSSE

Soil parameters Assimilation conditions

Soil type Clay loam Depth 100 cm

Soil moisture at saturation 0.476 m3 m−3 Number of soil layers 50

Exponent b 5.33 Initial soil moisture 0.25 m3 m−3

Matric potential at saturation –63.0 cm Initial guess 0.20 m3 m−3

Hydraulic conductivity at saturation 25 cm day−1 Observations θo, T o, Qo, and V o
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eraging them with weighting coefficients μ and 1–μ
(with μ sampled from a uniform distribution U[0,1]).
The initial soil moisture is intentionally poor to ac-
count for the poor knowledge of actual soil moisture,
with an initial value of 0.2 m3 m−3 (approximately
half the saturated soil moisture). The initial ensemble
of soil moisture is generated by adding a normally-
distributed random field with a mean of zero and a
standard deviation (STD) of 0.05 m3 m−3 to the initial
guess. Observational errors are represented by tempo-
rally uncorrelated additive Gaussian noise with STDs
of 1 K for T o, 0.8 g kg−1 for Qo, 1.4 m s−1 for |V o|,
and 0.03 m3 m−3 for θo. The assimilation time interval
ranges from 24 to 0.5 h. Further details are provided
in Section 4.

We use the mean absolute error (MAE) to quan-
titatively compare estimates by different approaches.
MAE is defined for an estimate f and its true value

f t as MAE = T−1
n

Tn∑
i=1

|f − f t|, where Tn is the num-

ber of the verification times. The benefit of the esti-
mate relative to an open loop simulation (i.e., an 80-
member ensemble forecast without data assimilation
with the same ensemble members and initial condi-
tions as the assimilation system) is estimated using
the relative MAE reduction (RMR)

RMR = (MAEOP − MAE)/MAEOP × 100%,

where MAEOP is the mean absolute error from the
open loop simulation.

4. Results and analysis

4.1 Results from assimilating only the near-

surface soil moisture observations

Previous assimilation studies have used off-line
meteorological forcing data to drive the LSM without
any coupling between the land surface and the atmo-
sphere aloft. Here, averaged soil moisture estimates
are calculated in four representative layers with the
midpoint depths of 2.5, 10, 30, and 72 cm from the
surface to facilitate comparisons and reduce random
errors. Averaged soil moisture conditions obtained
by assimilating the near-surface soil moisture observa-
tions at time intervals of 6 and 24 h are then compared

with the open loop simulations (Fig. 1). The 6-h time
interval is chosen to match the 6-h sampling interval
typical of synoptic station measurements. Estimates
of soil moisture based on 6-h assimilation interval are
more accurate than those based on 24-h assimilation
interval in all layers. The accuracy of soil moisture
estimates decreases gradually with increases in soil
depth. This is consistent with previous data assim-
ilation results using off-line LSM simulations (Zhang
et al., 2005; Walker et al., 2001). Assimilation of θo on
6-h interval is performed consistently throughout the
assimilation period and provides a means of quickly
retrieving the true soil moisture in each layer. By con-
trast, assimilation of θo on 24-h interval performs well
during the early stages but its impact gradually di-
minishes with time (particularly in the deeper layers).
In contrast with previous results using off-line LSM
simulations (Zhang et al., 2005; Walker et al., 2001),
our simulations of soil moisture take longer to con-
verge to a skillful estimate. Moreover, the accuracy
of the soil moisture estimates drops relative to that
of the off-line simulations when similar experimental
settings are used.

Unlike previous data assimilation experiments us-
ing off-line LSM simulations, CLS-BLM can be used
to estimate surface heat fluxes and the PBL states
in addition to the soil moisture profile. Sensitivity
tests indicate that accurate estimation of surface heat
fluxes will require a much shorter assimilation time in-
terval because surface heat fluxes change very quickly
after sunrise. This rapid adjustment of surface heat
fluxes to the diurnal cycle is completely different from
soil water transfer processes, which occur on a much
slower timescale. Moreover, unlike the background
states, heat fluxes are diagnosed rather than updated
with each assimilation cycle. Observations only affect
heat fluxes indirectly, with gradual adjustments to im-
proved model states. When the update frequency is
once per day, the estimated fluxes are almost identical
to those calculated by the open loop simulation. The
estimated fluxes are still not significantly better than
the open loop estimates when the assimilation time in-
terval is reduced to 6 h. The estimated fluxes are only
substantially improved when the assimilation time in-
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terval is reduced to 0.5 h (Fig. 2). This improve-
ment is especially apparent in the sensible heat flux.

Data assimilation improves the estimates more slowly
at later integration times due to the convergence of

Fig. 1. Averaged soil moisture estimates in four representative layers with the midpoint depths of (a) 2.5, (b) 10, (c)

30, and (d) 72 cm from the surface using assimilation time intervals of 6 h (dotted line) and 24 h (dash-dotted line). The

true soil moisture (solid line) and open loop estimate (dashed line) are also shown.

Fig. 2. Absolute errors (AE) in (a) latent heat flux and (b) sensible heat flux relative to the true fluxes when only θo is

assimilated at an assimilation time interval of 0.5 h (dashed line). The absolute errors for the open loop fluxes are also

shown (solid line).
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the ensemble members, with data assimilation esti-
mates of the sensible heat flux at the longest inte-
gration times even slightly worse than the open loop
results. The maximum absolute error of the estimated
fluxes during the 15-day data assimilation period al-
ways appears at approximately midday, between 1000
and 1600 LT (local time). On average, the largest
reduction in MAE lies in the estimates of surface sen-
sible heat flux. The RMR for sensible heat flux rel-
ative to the open loop flux is 44.5% at midday and
25.4% for the whole day (Table 2). The estimated
latent heat flux is progressively improved throughout
the 15-day data assimilation period (Fig. 2a). This
improvement may be attributable to simultaneous im-
provements in soil moisture estimates, which control
the surface evaporation when the soil is very dry (as
it is in this case). The next subsection will show that
estimates of the surface heat fluxes (especially latent
heat flux) can be improved still further when addi-
tional surface observations are assimilated.

This data assimilation experiment offers no im-
provement over the open loop ensemble for estimated
profiles of temperature, humidity, and wind in the
PBL, even when the assimilation time interval is re-
duced to 0.5 h (figure omitted). This result suggests
that assimilation of θo alone offers little potential for
improving estimates of the PBL state.

4.2 Results from assimilating all observations

This subsection describes an extension of the ex-
periments discussed in Subsection 4.1, in which all ob-
servations (i.e., θo, T o, Qo, and V o) are assimilated
into CLS-BLM. Consistency with the observational
frequency (i.e., once every 6 h) at the conventional me-
teorological observation stations is assured by initially
adopting a 6-h assimilation time interval. A 0.5-h time
interval is also used for comparison with the results re-

ported in Subsection 4.1. Figure 3 shows average soil
moisture estimates in the four specified layers with an
assimilation time interval of 6 h. The results obtained
from assimilating only θo and the open loop simula-
tions of soil moisture are included for comparison. The
estimates of soil moisture when all observations are as-
similated are almost the same as those obtained when
only θo is assimilated, although the former are slightly
more consistent with the true soil moisture. This re-
sult implies that assimilating T o, Qo, and V o does not
substantially improve estimates of soil moisture, con-
firming that the largest contribution to improvements
in simulated soil moisture profiles comes from assimi-
lating θo. This inference is supported by an additional
experiment in which only T o, Qo, and V o are assim-
ilated. In this case, the estimates are only slightly
better than the open loop soil moisture (figure omit-
ted).

Similar to the experiment in which only θo is as-
similated, the estimated surface heat fluxes are not
improved relative to the open loop fluxes if the as-
similation time interval is set to 6 h (figure omitted).
By contrast, reducing the assimilation time interval to
0.5 h results in substantial improvements in the esti-
mated surface heat fluxes relative to both the θo-only
and open loop experiments, particularly around mid-
day (Fig. 4). Assimilating surface observations leads
to particularly large improvements (i.e., reductions in
MAE) in the latent heat flux, with an RMR of 57.8%
at midday and an RMR of 46.2% for the whole day
(Table 2). Estimates of sensible heat flux are also im-
proved relative to the experiment in which only θo is
assimilated (c.f., Fig. 2).

The improvement in PBL state profiles after as-
similating all observations is investigated using the
MAE over the full 15-day period because the PBL
state changes often. Four representative times (0800,

Table 2. MAE and RMR of estimated surface fluxes over the 15-day assimilation period

Only assimilating θo Assimilating θo, T o, Qo, and V o Open loop

MAE RMR MAE RMR MAE

LHF (midday) 35.3 11.3% 16.8 57.8% 39.8

LHF (whole day) 24.3 8.6% 14.3 46.2% 26.6

SHF (midday) 17.2 44.5% 14.4 53.5% 31.0

SHF (whole day) 17.3 25.4% 16.2 30.2% 23.2



548 ACTA METEOROLOGICA SINICA VOL.27

1400, 2000, and 0200 LT) are chosen to reflect the di-
urnal evolution of the PBL structure.

Unlike when only θo is assimilated, estimates of
potential temperature profiles are improved relative to
the open loop simulations when all observations are as-

similated on 6-h interval (Fig. 5). These estimates can
be improved still further (especially at low levels) by
reducing the assimilation time interval to 0.5 h. As-
similating all observations even yields improvements
throughout the profile at night, when the coupling be-

Fig. 3. As in Fig. 1, but for experiments assimilating different sets of observations. SM indicates that only θo is

assimilated while AO indicates that all observations are assimilated.

Fig. 4. As in Fig. 2, but for the experiment in which all observations are assimilated.
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Fig. 5. Vertical profiles of MAE in potential temperature at (a) 0800, (b) 1400, (c) 2000, and (d) 0200 LT averaged over

the 15-day analysis period for experiments in which all observations are assimilated at intervals of 0.5 h (dash-dotted

line) and 6 h (dotted line). Results from the open loop simulation (solid line) are also shown.

tween the surface layer and the upper residual layer
becomes small (Figs. 5c and 5d). Turbulent fluxes
weaken at night, while the model lacks the advective
tendency that forces ensemble members to respond
to external changes. Accordingly, the ensemble mean
changes little with time. On the other hand, useful
information about the daytime state propagates into
the residual layer at nighttime. These two factors may
both contribute to the skill in estimates of nighttime
PBL temperature profiles.

The improvements in specific humidity profiles
(Fig. 6) are similar to the improvements in temper-
ature profiles. The MAE throughout the humidity
profile is reduced relative to the open loop simula-
tion at all four representative times. Furthermore, the
MAE is smaller when the assimilation time interval is
shorter. Unlike the temperature profiles, the MAE in
specific humidity changes smoothly in the vertical di-
rection with similar improvements at all levels. The
reason for this is that the ensemble means and incre-
ments of humidity all change smoothly with height.

Improvements in the profile of horizontal wind
(Fig. 7) are also similar to improvements in both tem-

perature and humidity profiles. One difference is that
shorter assimilation time interval provides greater im-
provements in estimates of horizontal wind than in
estimates of temperature or specific humidity in the
afternoon and at night. This difference arises because
the state of PBL winds often changes quickly in the
afternoon while the state at night relaxes gradually to-
ward the geostrophic wind, resulting in a rapid growth
of internal errors. Increasing the frequency of updates
helps to prevent error growth and improve the esti-
mates.

4.3 Sensitivity to specified observational err-

ors

The results of the previous two subsections are all
based on the assumption of specified observational er-
rors (STDs of 1 K for T o, 0.8 g kg−1 for Qo, 1.4 m s−1

for |V o|, and 0.03 m3 m−3 for θo). These experiments
are henceforth referred to as the base-case assimilation
experiments. Observational errors are likely to change
in real applications. To investigate the potential im-
pacts of changes in observational errors on the skill
of soil moisture, heat flux and PBL state profile esti-
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Fig. 6. As in Fig. 5, but for specific humidity.

Fig. 7. As in Fig. 5, but for horizontal wind speed.

mates, two additional data assimilation experiments
are conducted. Observational errors are reduced by a
factor of 5 in the first experiment (errors in soil mois-
ture are reduced by a factor of 3 to 0.01 m3 m−3) and

increased by a factor of 5 in the second (errors in soil
moisture are increased to 0.05 m3 m−3).

Estimates of soil moisture profile are severely af-
fected when observational errors are increased, even
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becoming worse than open loop soil moisture at the
two deepest layers after a few days (figure omitted).
The effects on estimates of the PBL potential temper-
ature profile are dependent on the time of day (Fig.
8). Improvements relative to the open loop simulation
are only evident at 1400 LT. These improvements are
related to increased ensemble spread at the observing
location due to strong turbulent mixing. The observed
temperature in the surface layer is highly correlated
with temperature in the well-mixed PBL at this time,
resulting in large analysis increments. At all other
times (i.e., 0800, 2000, and 0200 LT), the state esti-
mates are slightly worse than the open loop simulation
at some levels because of the smallness of the analysis
increments. The specific humidity profile (Fig. 9) is
only worse than the open loop simulation at a few lev-
els at 0800 LT. At all other times, the data assimilation
still adds skill due to slow reductions in the ensemble
spread. Unlike temperature and humidity, the profile
of horizontal wind is still improved relative to the open
loop at all levels and all times, although the degree of
improvement is different at different times (Fig. 10).

The winds are always forced by the geostrophic wind
distribution, so even at night the ensemble spread does
not often become small.

When the observational errors are specified to be
smaller than in the base-case experiment (i.e., a closer
fit to the true state), estimates of soil moisture near the
observing location are generally improved relative to
the base-case experiment. The one exception is in the
two deepest layers, where small ensemble spread leads
to slightly worse estimates at later times (figure omit-
ted). All three PBL state profiles improve consistently
at all levels relative to the base-case experiment at
0800, 1400, and 2000 LT. At upper levels at 0200 LT,
temperature estimates do not improve with reductions
in observational errors, while wind estimates even be-
come slightly worse than the base-case (although the
degree of deterioration is relatively weak). These re-
sults indicate that the EnSRF assimilation system
is very sensitive to increases in observational errors
and moderately sensitive to decreases in observational
errors.

Fig. 8. Profiles of MAE in temperature estimates at (a) 0800, (b) 1400, (c) 2000, and (d) 0200 LT using different

ranges of observational errors. R1 (dashed line) indicates the experiment with smaller observational errors, R2 (dash-

dotted line) indicates the base-case experiment, and R3 (dotted line) indicates the experiment with larger observational

errors.
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Fig. 9. As in Fig. 8, but for specific humidity.

Fig. 10. As in Fig. 8, but for horizontal wind speed.

5. Summary and discussion

An observing system simulation experiment
(OSSE) has been designed and carried out to show

the ability of data assimilation to improve estimates
of the soil moisture profile, surface heat fluxes, and
PBL states when different sets of observations are as-
similated. The coupled land surface-boundary layer
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model is a 1D column model with the same PBL pa-
rameterization as the WRF model, forced by WRF
forecasts. The EnSRF data assimilation algorithm is
used. EnSRF does not require perturbed observations
and can provide estimates of anisotropic and inhomo-
geneous background error covariance. The skill of the
data assimilation experiments is quantified on a one
point scale relative to the true state and open loop
simulations during 13–29 August 2003.

The soil moisture profile can be retrieved effec-
tively when a 6-h assimilation time interval is used,
regardless of whether the assimilation includes only
soil moisture (θo) or all observations (T o, Qo, V o, and
θo). The results are slightly better when all observa-
tions are assimilated. Soil moisture in the deep layer
cannot be correctly estimated when the assimilation
time interval is 24 h. This result contrasts with the
results of previous studies that used an off-line land
surface model driven by external atmospheric forcings.

Surface heat flux estimates are only substantially
improved when the assimilation time interval is fur-
ther reduced from 6 to 0.5 h, with large reductions in
MAE between 1000 and 1600 LT. Surface heat fluxes
are better when all observations are assimilated than
when only θo is assimilated. These improvements are
especially significant for estimates of the latent heat
flux at midday.

Estimates of the PBL state cannot be substan-
tially improved relative to the open loop simulation
when only θo is assimilated, even when the assim-
ilation time interval is reduced to 0.5 h. However,
assimilating all observations yields improvements in
estimates of the PBL state when the assimilation time
interval is 6 h, even at night. Reducing the assim-
ilation time interval to 0.5 h further enhances the
accuracy of estimates of the PBL state. Differences in
the timescales of related processes lead to differences
in the minimum assimilation time interval required
to improve estimates of soil moisture profiles, surface
heat fluxes, and PBL state profiles.

Sensitivity tests show that increasing the specified
observational errors worsens estimates of deep-layer
soil moisture and the vertical structure of the PBL
temperature profile. These estimates are sensitive to

increases in observational errors. Reducing the ob-
servational errors generally improves the skill of state
estimates near the observing locations, although tem-
perature and wind estimates at upper levels (which
are farther from the observing locations) may worsen
slightly at night. This adverse effect is not serious.

Although these results are promising, further re-
search is needed to successfully apply these assimila-
tion techniques to real observations. The experimen-
tal case presented here is limited to a short period
in summer, when horizontal advection is weak and
the coupling between the surface and the atmosphere
aloft is strong. A column model with no advection
may not provide a correct background forecast for use
in EnSRF during winter, when strong advection exists.
The most difficult issue when assimilating real obser-
vational data is how to address model errors from
different sources (e.g., parameterizations of vertical
diffusion and turbulent mixing in the PBL, uncer-
tainties in modeling the strength of land-atmospheric
coupling and feedbacks on local and regional scales,
etc.). Model errors may be further complicated when
the land surface is heterogeneous. Although EnSRF
potentially has the ability to simultaneously estimate
both model states and model uncertainties using the
state augmentation technique, initial experimentation
along these lines has not been encouraging. More re-
search is still needed to evaluate this approach due
to the highly nonlinear relationships between model
states and parameters.
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